Phylogeography of the genus Podococcus (Palmae/Arecaceae) in Central African rain forests: Climate stability predicts unique genetic diversity.

Mol Phylogenet Evol

Institut de Recherche pour le Développement, UMR-DIADE, BP 64501, F-34394 Montpellier cedex 5, France; Université de Yaoundé I, Ecole Normale Supérieure, Département des Sciences Biologiques, Laboratoire de Botanique systématique et d'Ecologie, B.P. 047, Yaoundé, Cameroon; Naturalis Biodiversity Centre, Botany Section, Darwinweg 2, 2333 CR Leiden, The Netherlands.

Published: December 2016

The tropical rain forests of Central Africa contain high levels of species diversity. Paleovegetation or biodiversity patterns suggested successive contraction/expansion phases on this rain forest cover during the last glacial maximum (LGM). Consequently, the hypothesis of the existence of refugia e.g. habitat stability that harbored populations during adverse climatic periods has been proposed. Understory species are tightly associated to forest cover and consequently are ideal markers of forest dynamics. Here, we used two central African rain forest understory species of the palm genus, Podococcus, to assess the role of past climate variation on their distribution and genetic diversity. Species distribution modeling in the present and at the LGM was used to estimate areas of climatic stability. Genetic diversity and phylogeography were estimated by sequencing near complete plastomes for over 120 individuals. Areas of climatic stability were mainly located in mountainous areas like the Monts de Cristal and Monts Doudou in Gabon, but also lowland coastal forests in southeast Cameroon and northeast Gabon. Genetic diversity analyses shows a clear North-South structure of genetic diversity within one species. This divide was estimated to have originated some 500,000years ago. We show that, in Central Africa, high and unique genetic diversity is strongly correlated with inferred areas of climatic stability since the LGM. Our results further highlight the importance of coastal lowland rain forests in Central Africa as harboring not only high species diversity but also important high levels of unique genetic diversity. In the context of strong human pressure on coastal land use and destruction, such unique diversity hotspots need to be considered in future conservation planning.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ympev.2016.08.005DOI Listing

Publication Analysis

Top Keywords

genetic diversity
28
rain forests
12
unique genetic
12
central africa
12
areas climatic
12
climatic stability
12
diversity
10
genus podococcus
8
central african
8
african rain
8

Similar Publications

Background: The Immunoglobulin Heavy Chain (IGH) genomic region is responsible for the production of circulating antibodies and warrants careful investigation for its association with COVID-19 characteristics. Multiple allelic variants within and across different IGH gene segments form a limited set of haplotypes. Previous studies have shown associations between some of these haplotypes and clinical outcomes of COVID-19.

View Article and Find Full Text PDF

A comprehensive allele specific expression resource for the equine transcriptome.

BMC Genomics

January 2025

Department of Population Health and Reproduction, Davis School of Veterinary Medicine, University of California, Room 4206 Vet Med3A One Shields Ave, Davis, CA, 95616, USA.

Background: Allele-specific expression (ASE) analysis provides a nuanced view of cis-regulatory mechanisms affecting gene expression.

Results: An equine ASE analysis was performed, using integrated Iso-seq and short-read RNA sequencing data from four healthy Thoroughbreds (2 mares and 2 stallions) across 9 tissues from the Functional Annotation of Animal Genomes (FAANG) project. Allele expression was quantified by haplotypes from long-read data, with 42,900 allele expression events compared.

View Article and Find Full Text PDF

Background: Study the leaf functional traits is highly important for understanding the survival strategies and climate adaptability of old trees. In this study, the old (over 100 years old) and mature trees (about 50 years old) of Pinus tabulaeformis in the Loess Plateau were studied, and the variation of 18 leaf functional traits (6 economic, 4 anatomical, 2 photosynthetic and 6 physiological traits) was analyzed to understand the differences of survival strategies between old and mature trees. Combined with transcriptome and simple sequence repeats (SSR) techniques, the effects of soil property factors and genetic factors on leaf functional traits and the potential molecular mechanisms of traits differences were studied.

View Article and Find Full Text PDF

Insights into incompatible plasmids in multidrug-resistant Raoultella superbugs.

BMC Microbiol

January 2025

State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, China.

The emergence of multidrug-resistant (MDR) Raoultella isolates is linked to the acquisition of antibiotic resistance genes (ARGs) with plasmids playing a pivotal role in this process. While plasmid-mediated transmission of ARGs in Raoultella has been extensively reported, limited attention has been given to genetically dissecting the modular structures of plasmids. This study aims to elucidate the genomic features of novel incompatible plasmids in MDR Raoultella by presenting 13 complete plasmid sequences from four isolates, along with an analysis of 16 related plasmids from GenBank.

View Article and Find Full Text PDF

Multiple myeloma (MM) is an incurable blood cancer with unclear aetiology. Proteomics is a valuable tool in exploring mechanisms of disease. We investigated the causal relationship between circulating proteins and MM risk, using two of the largest cohorts with proteomics data to-date.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!