Combined analysis of trace elements and isotopic composition of particulate organic matter in suspended sediment to assess their origin and flux in a tropical disturbed watershed.

Environ Pollut

Centro de Energia Nuclear na Agricultura (CENA), Universidade de São Paulo, Avenida Centenário, 303, CEP 13416-970, Piracicaba, São Paulo, Brazil. Electronic address:

Published: November 2016

Approximately 40% of the volume of domestic sewage generated in the São Paulo State is untreated and released into water bodies, causing serious pollution problems that affect the water quality and especially the suspended sediments transported by rivers. Thus, this paper investigates the seasonal influence on the origin and fluxes of Cu, Co, Cr, Zn, Cd, Ni, Sc and particulate organic matter (POM) in sediments transported by a disturbed watershed in the São Paulo State, i.e. the Sorocaba River basin. POM was characterized using particulate organic carbon, particulate organic nitrogen, C:N ratio and δC and δN stable isotopic composition. Eight sample collections of fine suspended sediments (FSS) were carried out at the mouth of the Sorocaba River from July 2009 to May 2010. During the study period, the discharge rate followed the seasonal variation trend of the past 25 years. Zn was the most abundant trace element in the FSS, followed by Cr, Cu, Ni, Co, Sc and Cd. There was a higher concentration of trace elements during the dry season, except for Sc and Co, which did not vary seasonally. The POM showed the same trend, with higher concentrations during the dry season. The calculated enrichment factors and geoaccumulation index indicated that most of the trace elements are of geogenic origin, except for Zn, which showed significant anthropogenic contributions (55%). The elemental and isotopic analysis of C and N and C:N ratio indicated that the anthropogenic origin of POM found in the FSS is related mainly to domestic sewage (97%), while the significant correlation found between the concentrations of Zn and POM indicates that the main anthropogenic source of Zn is related to this domestic sewage. The FSS load transported during the study period was of 373,194 t y, of which 87% occurred during the rainy season.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2016.08.008DOI Listing

Publication Analysis

Top Keywords

particulate organic
16
trace elements
12
domestic sewage
12
isotopic composition
8
organic matter
8
disturbed watershed
8
são paulo
8
paulo state
8
suspended sediments
8
sediments transported
8

Similar Publications

Short-term warming supports mineral-associated carbon accrual in abandoned croplands.

Nat Commun

January 2025

Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, China.

Effective soil organic carbon (SOC) management can mitigate the impact of climate warming. However, the response of different SOC fractions to warming in abandoned croplands remains unclear. Here, categorizing SOC into particulate and mineral-associated organic carbon (POC and MAOC) with physical fractionation, we investigate the responses of POC and MAOC content and temperature sensitivity (Q) to warming through a 3-year in situ warming experiment (+1.

View Article and Find Full Text PDF

Eastern North Carolina has been subjected to widespread water quality degradation for decades, notably throughout the Cape Fear River Watershed, owing largely to the magnitude of concentrated animal feeding operations (CAFOs) in the region. Long-term nutrient monitoring data from numerous locations throughout southeastern North Carolina have shown significantly elevated organic nitrogen (Org-N) concentrations starting around the year 2000-a concerning development, as labile Org-N can stimulate algal blooms and subsequent bacterial production, thus enhancing eutrophication in freshwater systems. By measuring the stable isotope signatures (δC, δN) of particulate organic matter sampled from a range of southeastern North Carolina waters, the predominant sources to the observed Org-N loadings were elucidated.

View Article and Find Full Text PDF

Component analysis and source identification of atmospheric aerosols at the neighborhood scale in a coastal industrial city in China.

Environ Pollut

December 2024

State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.

A multiple-site filter-sampling observation study was conducted in a coastal industrial city (Rizhao, 35°10'59″N, 119°23'57″E) to understand the main components, formation mechanisms, and potential sources of particulate matter. The average (±σ) mass concentration of PM across all the sites was 42 (±27) μg/m, with high variability (6∼202 μg/m). Water-soluble inorganic ions (WSIIs) were the major contributors (54%∼60%) to PM with mean values for sulfate (13 μg/m), nitrate (6 μg/m), and ammonium (7 μg/m) (SNA).

View Article and Find Full Text PDF

The effects of PM components on the cardiovascular disease admissions in Shanghai City, China: a multi- region study.

BMC Public Health

December 2024

Department of Hospital Infection Control, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China.

Article Synopsis
  • The study investigates the impact of five specific particulate matter (PM) components on cardiovascular disease (CVD) admissions in Shanghai from 2013-2019.
  • All five PM components were found to significantly increase the risk of CVD admissions, with carbon black (BC) and organic matter (OM) showing the strongest associations.
  • The elderly population (65 years and older) was particularly vulnerable to these pollutants compared to younger individuals, highlighting the need for targeted prevention measures.
View Article and Find Full Text PDF

Soil carbon fractionation as a tool to monitor coastal wetland rehabilitation.

J Environ Manage

December 2024

School of Agriculture, Food and Wine, Faculty of Sciences, Engineering and Technology, Waite Campus, University of Adelaide, Urrbrae, 5064, Australia. Electronic address:

Coastal wetland rehabilitation can provide nature-based solutions for climate change mitigation. The high carbon accumulation rate and carbon secured, potentially for several millennia, as soil organic carbon (SOC), is among the reasons. Measuring SOC storage and accrual over time are the main tools to understand rehabilitation success.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!