Tumor infiltrating monocytes play a crucial role in tumor immune surveillance. As lactate is an important component of the tumor milieu, we investigated its role in the transcriptional regulation of MHC I which is crucial for mounting effective immune responses against tumors. Lactate elevated MHC class I expression in monocytes. Increase in HLAB expression was concomitant with increase in HIF-1α and decrease in PRMT1 levels. Interestingly, a reciprocal relationship was observed between PRMT1 and HIF-1α. While HIF-1α inhibition decreased lactate induced MHC I, both pharmacological inhibition and siRNA mediated knockdown of PRMT1 upregulated HLAB levels. PRMT1 over-expression rescued lactate mediated increase in MHC I expression. Lactate mediated changes in nucleosomal occupancy on HLAB promoter facilitated a chromatin landscape that favoured decreased recruitment of CREB and PRMT1 on CRE site of HLAB locus. The effect of lactate on the chromatin landscape of HLAB was completely mimicked by PRMT1 inhibitor AMI-1 in terms of nucleosomal occupancy and CREB recruitment. Besides demonstrating the importance of lactate in the transcriptional regulation of HLAB, this study highlights for the first time the (i) existence of HIF-1α-PRMT1 regulatory loop and (ii) role of PRMT1 in modulating chromatin landscape crucial for facilitating HLAB gene expression.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.yexcr.2016.08.008 | DOI Listing |
Transcription introduces torsional stress in the DNA fiber causing it to transition from a relaxed to a supercoiled state that can propagate across several kilobases and modulate the binding and activity of DNA-associated proteins. As a result, transcription at one locus has the potential to impact nearby transcription events. In this study, we asked how DNA supercoiling affects histone modifications and transcription of neighboring genes in the multicellular eukaryote .
View Article and Find Full Text PDFBrief Bioinform
November 2024
State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou, Xuanwu District, Nanjing 210096, China.
Spatial transcriptomics technologies have been extensively applied in biological research, enabling the study of transcriptome while preserving the spatial context of tissues. Paired with spatial transcriptomics data, platforms often provide histology and (or) chromatin images, which capture cellular morphology and chromatin organization. Additionally, single-cell RNA sequencing (scRNA-seq) data from matching tissues often accompany spatial data, offering a transcriptome-wide gene expression profile of individual cells.
View Article and Find Full Text PDFPlant Physiol
January 2025
Key Laboratory for Vegetable Biology of Hunan Province, Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, College of Horticulture, Hunan Agricultural University, Changsha 410125, China.
Carotenoids play indispensable roles in the ripening process of fleshy fruits. Capsanthin is a widely distributed and utilized natural red carotenoid. However, the regulatory genes involved in capsanthin biosynthesis remain insufficient.
View Article and Find Full Text PDFGenes Dev
December 2024
Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5T 3H7, Canada;
The nucleolus is a major subnuclear compartment where ribosomal DNA (rDNA) is transcribed and ribosomes are assembled. In addition, recent studies have shown that the nucleolus is a dynamic organizer of chromatin architecture that modulates developmental gene expression. rDNA gene units are assembled into arrays located in the p-arms of five human acrocentric chromosomes.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Louvain Institute of Molecular Science and Technology, Université catholique de Louvain, 5 (L7.07.10) Place Croix du Sud, 1348 Louvain-la-Neuve, Belgium.
genes play essential roles in patterning the anteroposterior axis of animal embryos and in the formation of various organs. In mammals, there are 39 genes organized into four clusters (HOXA-D) located on different chromosomes. In relationship with their orderly arrangement along the chromosomes, these genes show nested expression patterns which imply that embryonic territories co-express multiple genes along the main body axis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!