The kidney proximal tubule is the primary site in the nephron for excretion of waste products through a combination of active uptake and secretory processes and is also a primary target of drug-induced nephrotoxicity. Here, we describe the development and functional characterization of a 3-dimensional flow-directed human kidney proximal tubule microphysiological system. The system replicates the polarity of the proximal tubule, expresses appropriate marker proteins, exhibits biochemical and synthetic activities, as well as secretory and reabsorptive processes associated with proximal tubule function in vivo. This microphysiological system can serve as an ideal platform for ex vivo modeling of renal drug clearance and drug-induced nephrotoxicity. Additionally, this novel system can be used for preclinical screening of new chemical compounds prior to initiating human clinical trials.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4987715PMC
http://dx.doi.org/10.1016/j.kint.2016.06.011DOI Listing

Publication Analysis

Top Keywords

proximal tubule
20
kidney proximal
12
human kidney
8
tubule function
8
drug-induced nephrotoxicity
8
microphysiological system
8
proximal
5
tubule
5
development microphysiological
4
microphysiological model
4

Similar Publications

Exacerbation of diabetes due to F. Nucleatum LPS-induced SGLT2 overexpression in the renal proximal tubular epithelial cells.

BMC Nephrol

January 2025

Department of Oral Function & Anatomy, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, 2-5-1 Shikata-cho, Kita- ku, Okayama, 700-0914, Japan.

Background: Diabetes treatments by the control of sodium-glucose cotransporter 2 (SGLT2) is commonly conducted while there are still uncertainties about the mechanisms for the SGLT2 overexpression in kidneys with diabetes. Previously, we have reported that glomeruli and proximal tubules with diabetic nephropathy express toll-like receptor TLR2/4, and that the TLR ligand lipopolysaccharide (LPS) of periodontal pathogens have caused nephropathy in diabetic model mice. Recently, many researchers suggested that the periodontal pathogenic bacteria Fusobacterium (F.

View Article and Find Full Text PDF

Repurposing Mitochondria-Targeted Therapeutics for Kidney Diseases.

Kidney Int

January 2025

Department of Pharmacology & Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona, USA; Southern Arizona VA Health Care System, Tucson, Arizona, USA; Southwest Environmental Health Science Center, University of Arizona, Tucson, Arizona, USA. Electronic address:

The kidney is one of the most metabolically demanding organs in the human body and requires a large amount of energy, in the form of adenosine triphosphate (ATP), to perform and maintain normal renal functions. To meet this energy demand, proximal tubule cells within the nephron segments of the renal cortex are mitochondrially dense with high oxygen consumption rates. Mitochondria are complex organelles involved in diverse cellular and molecular functions, including the production of ATP, calcium homeostasis, and phospholipid regulation.

View Article and Find Full Text PDF

Aim: To study the effect and elucidate the underlying mechanisms of VDAC1-ΔC on autophagy in renal tubular epithelial cells injured by hypoxia/reoxygenation.

Methods: C57/BL6 mice were randomly divided into groups: sham operation group, IRI 1d group and IRI 2d group. The inner canthal blood of mice was collected to detect the levels of serum creatinine and urea nitrogen and kidney tissues were sampled, and sections were stained with Periodic acid-Schiff for morphological evaluation.

View Article and Find Full Text PDF

Emerging evidence suggests cell exfoliation could be operating under the control of cell metabolism. It is unclear if there are associations between the concentration of exfoliated kidney proximal tubule cells (PTCs) in urine with glycemic control and complications. Our study is aimed at exploring this.

View Article and Find Full Text PDF

Nucleic acid medicine encompassing antisense oligonucleotides (ASOs) has garnered interest as a potential avenue for next-generation therapeutics. However, their therapeutic application has been constrained by challenges such as instability, off-target effects, delivery issues, and immunogenic responses. Furthermore, their practical utility in treating kidney diseases remains unrealized.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!