By use of agarose gel electrophoresis, the sieving of spherical particles in agarose gels has been quantitated and modeled for spheres with a radius (R) between 13.3 and 149 nm. For quantitation, the electrophoretic mobility has been determined as a function of agarose percentage (A). Because a previously used model of sieving [D. Rodbard and A. Chrambach (1970) Proc. Natl. Acad. Sci. USA 65, 970-977] was found incompatible with some of these data, alternative models have been tested. By use of an underivatized agarose, two models, both based on the assumption of a single effective pore radius (PE) for each A, were found to yield PE values that were independent of R and that were in agreement with values of PE obtained independently (PE = 118 nm X A-0.74): sieving by altered hydrodynamics in a cylindrical tube of radius, PE, and sieving by steric exclusion from a circular hole of radius, PE. The same analysis applied to a 6.5% hydroxyethylated commercial agarose yielded a steeper PE vs A plot and also agreement of the above two models with the data. The PE vs A plot was significantly altered by both further hydroxyethylation and factors that cause variation in the electro-osmosis found in commercial agarose.

Download full-text PDF

Source
http://dx.doi.org/10.1002/bip.360280811DOI Listing

Publication Analysis

Top Keywords

agarose gel
8
gel electrophoresis
8
commercial agarose
8
agarose
7
sieving
5
sieving spheres
4
spheres agarose
4
electrophoresis quantitation
4
quantitation modeling
4
modeling agarose
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!