Simplifying the ion source for mass spectrometry.

Rapid Commun Mass Spectrom

Department of Chemistry, Wayne State University, Detroit, MI, 48202, USA.

Published: December 2016

Download full-text PDF

Source
http://dx.doi.org/10.1002/rcm.7718DOI Listing

Publication Analysis

Top Keywords

simplifying ion
4
ion source
4
source mass
4
mass spectrometry
4
simplifying
1
source
1
mass
1
spectrometry
1

Similar Publications

With the global surge in lithium-ion batteries (LIBs), recycling spent LIBs has become an essential and urgent research area. In the context of global efforts to promote sustainable development, and achieve energy conservation and emission reduction, advancing recycling technologies that efficiently recover critical metals like Ni, Co, Mn, and Li is crucial. Herein, a novel and environmentally friendly simplified process for selectively extracting critical metals from the mixed electrode materials of spent LIBs is proposed for the first time.

View Article and Find Full Text PDF

The local environment of the active site, such as the confinement of hydronium ions within zeolite pores, significantly influences catalytic turnover, similar to enzyme functionality. This study explores these effects in the hydrolysis of guaiacols─lignin-derived compounds─over zeolites in water. In addition to the interesting catechol products, this reaction is advantageous for study due to its bimolecular hydrolysis pathway, which involves a single energy barrier and no intermediates, simplifying kinetic studies and result interpretation.

View Article and Find Full Text PDF

O-Protected oxacarbenium ions are key intermediates of glycosylation reactions. The knowledge of their conformational preferences is crucial for choosing the correct blocking group pattern to achieve the required stereochemical outcome. This article describes a computational study of several glucosyl oxacarbenium cations.

View Article and Find Full Text PDF

Lithium-ion batteries represent a significant component of the field of energy storage, with a diverse range of applications in consumer electronics, portable devices, and numerous other fields. In view of the growing concerns about the safety of batteries, it is of the utmost importance to develop a sensor that is capable of accurately monitoring the internal temperature of lithium-ion batteries. External sensors are subject to the necessity for additional space and ancillary equipment.

View Article and Find Full Text PDF
Article Synopsis
  • Biomagnetic fluid dynamics (BFD) focuses on the behavior of bio-fluids, like blood, impacted by magnetic fields, which is important for medical applications such as targeted medication delivery and tumor treatment.
  • This study examines blood flow dynamics using trihybrid nanoparticles in a catheterized artery, factoring in various electromagnetic influences and propulsion mechanisms.
  • Key findings include that increasing Hall and ion-slip parameters boosts blood velocity, modifies entropy generation, and shows that modified hybrid nano-blood forms smaller, more manageable clumps compared to pure blood, with longer cilia enhancing recovery of these clumps.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!