Retinoic acid (RA), bromodeoxyuridine (BrdU), and the Δ205 mutant polyoma middle T antigen affect the expression of a common ensemble of proteins in HL-60 human myeloblastic leukemia cells. Each of these agents is known to be able to prime HL-60 cells and accelerate subsequently induced myeloid or monocytic differentiation and G0 cell cycle arrest, suggesting that they have equal or identical cellular targets relevent to the early stages of inducing cell differentiation and G0 arrest. As a test of this possibility, a survey of protein expression changes induced by RA, BrdU, or Δ205 transfection was performed. Retinoic acid induced numerous changes within h. Bromodeoxyuridine caused larger numbers of changes, whereas Δ205 caused a more limited number. Among the hundreds of affected proteins detected, there were comparable numbers of up- or downregulated proteins. A small number changed between undetectable and detectable expression. The affected proteins were not restricted to a single functional class and included transcription factors, receptors, signaling molecules, cytoskeletal molecules, and effectors of various cellular processes such as deoxyribonucleic acid replication, transcription, and translation. The intersect of the sets of proteins affected by RA, BrdU, and Δ205 was identified to determine if these agents regulated a common subset of proteins. This ensemble contained the commonly upregulated proteins AF6, ABP-280, ENC-1, ESE 1, MAP2B, NTF2, casein kinase, IRF1, SRPK2, Rb2, RhoGDI, P47phox, CD45, PKR, and SIIIp15. The commonly downregulated proteins were SHC, katanin, flotillin-2/ESA, EB 1, p43/EMAPIIprecursor, Jabl, FNK. The composition of the ensemble suggested three apparent themes for cellular processes that were affected early. The themes reflected the ultimate fate of the treated precursor cells as a mature myeloid cell, namely a cell whose hallmarks are (1) motility to migrate to a target and phagocytize it, (2) inducible oxidative metabolism to reduce the target with superoxide from a respiratory burst, and (3) biosynthetic slow down consistent with conversion from cell proliferation to quiescence. Interestingly, RA appears to induce aspects of an interferon-like response of potential significance as part of a biosynthetic slow down leading to cell cycle arrest. In conclusion, three biologically disparate ways to prime cells to differentiate were used to filter out a small ensemble of commonly regulated proteins that group as either microtubule associated, oxidative metabolism machinery, or effectors of cellular responses to interferon.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1290/1543-706X(2004)40<216:RABATM>2.0.CO;2 | DOI Listing |
Polymers (Basel)
January 2025
Department of Optometry & Vision Science, Daegu Catholic University, Gyeongsan 38430, Republic of Korea.
This study aims to build an optimal drug delivery system by manufacturing and evaluating a hydrogel contact lens using Tretinoin (ATRA) and protein nanoparticles to improve the drug delivery system as an ophthalmic medical contact lens. To evaluate the optical and physical properties of the manufactured lens, the spectral transmittance, refractive index, water content, contact angle, AFM, tensile strength, drug delivery, and antibacterial properties were analyzed. The contact lens was manufactured to contain ATRA and bovine serum albumin (BSA) in different ways, and the results confirmed that A, B, and C each had different physical properties.
View Article and Find Full Text PDFPharmaceuticals (Basel)
January 2025
Health Sciences Postgraduate Program, São Francisco University-USF, Bragança Paulista 12916-900, SP, Brazil.
Background/objectives: This study investigates the metabolic profile of a single dose of etodolac in healthy volunteers, focusing on pharmacokinetics, clinical parameters, and metabolomic variations to identify biomarkers and pathways linked to drug response, efficacy, and safety.
Methods: Thirty-seven healthy volunteers, enrolled after rigorous health assessments, received a single dose of etodolac (Flancox 500 mg). Pharmacokinetic profiles were determined using tandem mass spectrometry analysis, and the metabolomic profiling was conducted using baseline samples (pre-dose) and samples at maximum drug concentration (post-dose) via liquid chromatography coupled with a quadrupole time-of-flight mass spectrometer.
Int J Mol Sci
January 2025
Fisheries College, Hunan Agricultural University, Changsha 410128, China.
belongs to the NOD-like receptor family and is recognized as a modulator of innate immune mechanisms. In this study, we firstly report that () acts as a negative regulator in the antiviral immune response. is ubiquitously expressed across tested tissues, displaying particularly high expression in the intestine, spleen, gill and kidney.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Division of Molecular & Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan.
Tooth/skeletal dysplasia, such as hypophosphatasia (HPP), has been extensively studied. However, there are few definitive treatments for these diseases owing to the lack of an in vitro disease model. Cells differentiated from patient-derived induced pluripotent stem cells (iPSCs) demonstrate a pathological phenotype.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department Hamm 1, Hamm-Lippstadt University of Applied Science, 59063 Hamm, Germany.
An obstacle for many microfluidic developments is the fabrication of its structures, which is often complex, time-consuming, and expensive. Additive manufacturing can help to reduce these barriers. This study investigated whether the results of a microfluidic assay for the detection of the promyelocytic leukemia (PML)-retinoic acid receptor α (RARα) fusion protein (PML::RARA), and thus for the differential diagnosis of acute promyelocytic leukemia (APL), could be transferred from borosilicate glass microfluidic structures to additively manufactured fluidics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!