Inactivation of dopamine beta-hydroxylase by beta-ethynyltyramine: kinetic characterization and covalent modification of an active site peptide.

Biochemistry

Department of Medicinal Chemistry, Smith Kline & French Laboratories, King of Prussia, Pennsylvania 19406.

Published: May 1989

beta-Ethynyltyramine has been shown to be a potent, mechanism-based inhibitor of dopamine beta-hydroxylase (DBH). This is evidenced by pseudo-first-order, time-dependent inactivation of enzyme, a dependence of inactivation on the presence of ascorbate and oxygen cosubstrates, the ability of tyramine (substrate) and 1-(3,5-difluoro-4-hydroxybenzyl)imidazole-2-thione (competitive multisubstrate inhibitor) to protect against inactivation, and a high affinity of beta-ethynyltyramine for enzyme. Inactivation of DBH by beta-ethynyltyramine is accompanied by stoichiometric, covalent modification of the enzyme. Analysis of the tryptic map following inactivation by [3H]-beta-ethynyltyramine reveals that the radiolabel is associated with a single, 25 amino acid peptide. The sequence of the modified peptide is shown to be Cys-Thr-Gln-Leu-Ala-Leu-Pro-Ala-Ser-Gly-Ile-His-Ile-Phe-Ala-Ser-Gln-Leu- His*- Thr-His-Leu-Thr-Gly-Arg, where His* corresponds to a covalently modified histidine residue. In studies using the separated enantiomers of beta-ethynyltyramine, we have found the R enantiomer to be a reversible, competitive inhibitor versus tyramine substrate with a Ki of 7.9 +/- 0.3 microM. The S enantiomer, while also being a competitive inhibitor (Ki = 33.9 +/- 1.4 microM), is hydroxylated by DBH to give the expected beta-ethynyloctopamine product and also efficiently inactivates the enzyme [kinact(app) = 0.18 +/- 0.02 min-1; KI(app) = 57 +/- 8 microM]. The partition ratio for this process is very low and has been estimated to be about 2.5. This establishes an approximate value for kcat of 0.45 min(-1) and reveals that (S)-beta-ethynyltyramine undergoes a slow turnover relative to that of tyramine (kcat approximately 50 s(-1), despite the nearly 100-fold higher affinity of the inactivator for enzyme.(ABSTRACT TRUNCATED AT 250 WORDS)

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi00435a032DOI Listing

Publication Analysis

Top Keywords

dopamine beta-hydroxylase
8
covalent modification
8
tyramine substrate
8
competitive inhibitor
8
+/- microm
8
inactivation
6
beta-ethynyltyramine
5
inactivation dopamine
4
beta-hydroxylase beta-ethynyltyramine
4
beta-ethynyltyramine kinetic
4

Similar Publications

How does dopamine convert into norepinephrine? Insights on the key step of the reaction.

J Mol Model

January 2025

Laboratorio de Química Teórica Computacional (QTC), Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, 7820436, Santiago de Chile, Chile.

Context: Dopamine -monooxygenase (D M) is an essential enzyme in the organism that regioselectively converts dopamine into R-norepinephrine, the key step of the reaction, studied in this paper, is a hydrogen atom transfer (HAT) from dopamine to a superoxo complex on D M, forming a hydroperoxo intermediate and dopamine radical. It was found that the formation of a hydrogen bond between dopamine and the D M catalyst strengthens the substrate-enzyme interaction and facilitates the HAT which takes place selectively to give the desired enantiomeric form of the product. Six reactions leading to the hydroperoxo intermediate were analyzed in detail using theoretical and computational tools in order to identify the most probable reaction mechanism.

View Article and Find Full Text PDF

Background: The locus coeruleus (LC), is the first brain region to develop hyperphosphorylated tau (ptau) inclusions in Alzheimer's disease (AD) and undergoes catastrophic degeneration in later stages of the disease. Importantly, the LC is the main noradrenergic nucleus in the brain and source of NE in the forebrain, and dysregulation of the neurotransmitter norepinephrine (NE) is associated with AD symptoms, as its release in the forebrain regulates attention, arousal, stress response, and learning and memory. Moreover, the LC may transmit pathogenic tau to the forebrain via its extensive projections.

View Article and Find Full Text PDF

Innervation of the female internal genital organs in 12-week-old porcine foetuses.

Pol J Vet Sci

December 2024

Department of Human Physiology and Pathophysiology, School of Medicine, University of Warmia and Mazury in Olsztyn, Warszawska 30, 10-082 Olsztyn, Poland.

This is the first study aimed to investigate the innervation of the internal genital organs in 12-week-old female pig foetuses using single and double-labelling immunofluorescence methods. Immunostaining for protein gene product 9.5 (PGP, general neural marker) revealed that the most numerous PGP-positive nerve fibres were found in the mesenchyme of the uterovaginal canal height.

View Article and Find Full Text PDF

The locus coeruleus (LC) plays a vital role in cognitive function through norepinephrine release. Impaired LC neuronal health and function is linked to cognitive decline during ageing and Alzheimer's disease. This study investigates age-related alterations in olfactory detection and discrimination learning, along with its reversal, in Long-Evans rats, and examines the effects of atomoxetine (ATM), a norepinephrine uptake inhibitor, on these processes.

View Article and Find Full Text PDF

Unlabelled: Despite a deep understanding of Parkinson's disease (PD) and levodopa-induced dyskinesia (LID) pathogenesis, current therapies are insufficient to effectively manage the progressive nature of PD or halt LID. Growing hypotheses suggested the NOD-like receptor 3 (NLRP3) inflammasome and orphan nuclear receptor-related 1 (Nurr1)/glycogen synthase kinase-3β (GSK-3β) and peroxisome proliferator-activated receptor γ (PPARγ) coactivator-1α (PGC-1α)/sirtuin 3 (SIRT3) pathways as potential avenues for halting neuroinflammation and oxidative stress in PD.

Aims: This study investigated for the first time the neuroprotective effect of canagliflozin against PD and LID in rotenone-intoxicated rats, emphasizing the crosstalk among the NLRP3/caspase-1 cascade, PGC-1α/SIRT3 pathway, mammalian target of rapamycin (mTOR)/beclin-1, and Nurr1/β-catenin/GSK-3β pathways as possible treatment strategies in PD and LID.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!