The constitutive androstane receptor (CAR) regulates the expression of genes involved in drug metabolism and other processes. A specific inhibitor of CAR is critical for modulating constitutive CAR activity. We recently described a specific small-molecule inhibitor of CAR, CINPA1 (ethyl (5-(diethylglycyl)-10,11-dihydro-5H-dibenzo[b,f]azepin-3-yl)carbamate), which is capable of reducing CAR-mediated transcription by changing the coregulator recruitment pattern and reducing CAR occupancy at the promoter regions of its target genes. In this study, we showed that CINPA1 is converted to two main metabolites in human liver microsomes. By using cell-based reporter gene and biochemical coregulator recruitment assays, we showed that although metabolite 1 was very weak in inhibiting CAR function and disrupting CAR-coactivator interaction, metabolite 2 was inactive in this regard. Docking studies using the CAR ligand-binding domain structure showed that although CINPA1 and metabolite 1 can bind in the CAR ligand-binding pocket, metabolite 2 may be incapable of the molecular interactions required for binding. These results indicate that the metabolites of CINPA1 may not interfere with the action of CINPA1. We also used in vitro enzyme assays to identify the cytochrome P450 enzymes responsible for metabolizing CINPA1 in human liver microsomes and showed that CINPA1 was first converted to metabolite 1 by CYP3A4 and then further metabolized by CYP2D6 to metabolite 2. Identification and characterization of the metabolites of CINPA1 enabled structure-activity relationship studies of this family of small molecules and provided information to guide in vivo pharmacological studies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5074473PMC
http://dx.doi.org/10.1124/dmd.116.071993DOI Listing

Publication Analysis

Top Keywords

cinpa1
9
identification characterization
8
constitutive androstane
8
androstane receptor
8
car
8
inhibitor car
8
coregulator recruitment
8
cinpa1 converted
8
human liver
8
liver microsomes
8

Similar Publications

Assessing the Selectivity of FXR, LXRs, CAR, and RORγ Pharmaceutical Ligands With Reporter Cell Lines.

Front Pharmacol

July 2020

Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, ICM, Univ Montpellier, Montpellier, France.

To characterize human nuclear receptor (NR) specificity of synthetic pharmaceutical chemicals we established stable cell lines expressing the ligand binding domains (LBDs) of human FXR, LXRα, LXRβ, CAR, and RORγ fused to the yeast GAL4 DNA binding domain (DBD). As we have already done for human PXR, a two-step transfection procedure was used. HeLa cells stably expressing a Gal4 responsive gene (HG5LN cell line) were transfected by Gal4-NRs expressing plasmids.

View Article and Find Full Text PDF

The constitutive androstane receptor (CAR) plays an important role in hepatic drug metabolism and detoxification but has recently been projected as a potential drug target for metabolic disorders due to its repression of lipogenesis and gluconeogenesis. Thus, identification of physiologically-relevant CAR modulators has garnered significant interest. Here, we adapted the previously characterized human CAR (hCAR) nuclear translocation assay in human primary hepatocytes (HPH) to a high-content format and screened an FDA-approved drug library containing 978 compounds.

View Article and Find Full Text PDF

Activation of constitutive androstane receptor inhibits intestinal CFTR-mediated chloride transport.

Biomed Pharmacother

March 2019

Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand; Research Center of Transport Protein for Medical Innovation, Faculty of Science, Mahidol University, Bangkok, Thailand. Electronic address:

Constitutive androstane receptor (CAR) belonging to the nuclear receptor superfamily plays an important role in the xenobiotic metabolism and disposition. It has been reported that CAR regulates the expression of the ATP-binding cassette (ABC) transporters in the intestine, such as multidrug resistance protein 1 (MDR1) and multidrug resistance-associated protein 2/3 (MRP2 and MRP3). In this study, we investigated the role of CAR in the regulation of cystic fibrosis transmembrane conductance regulator (CFTR)-mediated chloride transport in T84 human colonic epithelial cells and mouse intestinal tissues.

View Article and Find Full Text PDF

CINPA1 binds directly to constitutive androstane receptor and inhibits its activity.

Biochem Pharmacol

June 2018

Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA; Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, 920 Madison Avenue, Memphis, TN 38163, USA. Electronic address:

The constitutive androstane receptor (CAR) and pregnane X receptor (PXR) are xenobiotic sensors that regulate the expression of drug-metabolizing enzymes and efflux transporters. CAR activation promotes drug elimination, thereby reducing therapeutic effectiveness, or causes adverse drug effects via toxic metabolites. CAR inhibitors could be used to attenuate these adverse drug effects.

View Article and Find Full Text PDF

Unintentional activation of xenosensing nuclear receptors pregnane X receptor (PXR) and/or constitutive androstane receptor (CAR) by clinical drug use is known to produce severe side effects in patients, which may be overcome by co-administering antagonists. However, especially antagonizing CAR is hampered by the lack of specific inhibitors, which do not activate PXR. Recently, compounds based on a dibenzazepine carbamate scaffold were identified as potent CAR inhibitors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!