Polyphosphate is a polymer of phosphate residues linked by high energy phosphoanhydride bonds. Despite being highly conserved throughout nature, its function is poorly understood. Here we show that Dictyostelium cells accumulate extracellular polyphosphate, and this acts to inhibit proliferation at high cell densities. In shaking culture, extracellular polyphosphate concentrations increase as cell density increases, and if the concentration of polyphosphate observed at the stationary phase is added to cells at mid-log, proliferation is halted. Adding an exopolyphosphatase to cell cultures or stationary phase conditioned medium decreases polyphosphate levels and abrogates the anti-proliferative effect. The cells show saturable binding of polyphosphate, suggesting the presence of a cell surface polyphosphate receptor. Extracellular polyphosphate accumulation is potentiated by decreased nutrient levels, potentially as a means to anticipate starvation. Loss of the Dictyostelium polyphosphate kinase DdPpk1 causes intracellular polyphosphate levels to become undetectable and negatively affects fitness, cytokinesis, and germination. However, cells lacking DdPpk1 accumulate ∼50% normal levels of extracellular polyphosphate, suggesting an additional means of synthesis. We found that cells lacking inositol hexakisphosphate kinase, which is responsible for the synthesis of the inositol pyrophosphates IP7 and IP8, reach abnormally high cell densities and show decreased extracellular polyphosphate levels. Two different enzymes thus appear to mediate the synthesis of Dictyostelium extracellular polyphosphate, which is used as a signal in an autocrine negative feedback loop to regulate cell proliferation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5025707 | PMC |
http://dx.doi.org/10.1074/jbc.M116.737825 | DOI Listing |
J Cell Sci
January 2025
Program in Molecular Medicine, University of Massachusetts Chan Medical School, Suite 213 Biotech II, 373 Plantation Street, Worcester MA 01605, USA.
In humans, inositol polyphosphate-5-phosphatase e (INPP5E) mutations cause retinal degeneration as part of Joubert and MORM syndromes and can also cause non-syndromic blindness. In mice, mutations cause a spectrum of brain, kidney, and other anomalies and prevent the formation of photoreceptor outer segments. To further explore the function of Inpp5e in photoreceptors, we generated conditional and inducible knockouts of mouse Inpp5e where the gene was deleted either during outer segment formation or after outer segments were fully formed.
View Article and Find Full Text PDFWater Environ Res
January 2025
Arizona State University, Tempe, Arizona, USA.
Continuously flowing wastewater-treatment processes can be configured for biological and physical selection to form and retain large biological aggregates (LBAs), along with suspended biomass that contains ordinary biological flocs and biomass that has detached from the LBAs. Suspended biomass and LBAs have different solids residence times (SRTs) and mass-transport resistances. Here, mathematical sub-models that describe metabolic processes, a 1-D biofilm, and spherical carriers that can migrate throughout a wastewater-treatment process were combined to simulate a full-scale demonstration train having anaerobic, anoxic, and oxic zones, as well as side-stream enhanced biological phosphorus removal.
View Article and Find Full Text PDFRSC Chem Biol
December 2024
State Key Laboratory of Microbial Technology, Shandong University Qingdao 266237 China
Microorganisms serve as biological factories for the synthesis of nanomaterials such as CdS quantum dots. Based on the uniqueness of sp., a one-step route was explored to directly convert cadmium waste into CdS QDs using these bacteria.
View Article and Find Full Text PDFBioresour Technol
February 2025
School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou 215009, China.
A high phosphate (P) recovery concentration was achieved in pilot-scale biofilm sequencing batch reactor (BSBR) with a low carbon source (C) cost. Especially, a high-abundance glycogen-accumulating organisms (GAOs) (13.93-31.
View Article and Find Full Text PDFDent J (Basel)
November 2024
Department of Developmental & Surgical Sciences, University of Minnesota, Minneapolis, MN 55455, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!