Impact of the biased nucleotide composition of viral RNA genomes on RNA structure and codon usage.

J Gen Virol

Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam 1105 AZ, The Netherlands.

Published: October 2016

We are interested in the influence of nucleotide composition on the fundamental characteristics of the virus RNA genome. Most RNA viruses have genomes with a distinct nucleotide composition, e.g. ranging from minimally 12.9 % to maximally 40.3 % (C- and U-count, respectively, in coronavirus HKU). We present a global analysis of diverse virus types, including plus-strand, minus-strand and double-strand RNA viruses, for the impact of this nucleotide preference on the predicted structure of the RNA genome that is packaged in virion particles and on the codon usage in the viral open reading frames. Several virus-specific features will be described, but also some general conclusions were drawn. Without exception, the virus-specific nucleotide bias was enriched in the unpaired, single-stranded regions of the RNA genome, thus creating an even more striking virus-specific signature. We present a simple mechanism that is based on elementary aspects of RNA structure folding to explain this general trend. In general, the nucleotide bias was the major determinant of the virus-specific codon usages, thus limiting a role for codon selection and translational control. We will discuss molecular and evolutionary scenarios that may be responsible for the diverse nucleotide biases of RNA viruses.

Download full-text PDF

Source
http://dx.doi.org/10.1099/jgv.0.000579DOI Listing

Publication Analysis

Top Keywords

nucleotide composition
12
rna genome
12
rna viruses
12
rna
9
rna structure
8
codon usage
8
nucleotide bias
8
nucleotide
7
impact biased
4
biased nucleotide
4

Similar Publications

Unlabelled: The concept of genome-microbiome interactions, in which the microenvironment determined by host genetic polymorphisms regulates the local microbiota, is important in the pathogenesis of human disease. In otolaryngology, the resident bacterial microbiota is reportedly altered in non-infectious ear diseases, such as otitis media pearls and exudative otitis media. We hypothesized that a single-nucleotide polymorphism in the ATP-binding cassette sub-family C member 11 () gene, which determines earwax properties, regulates the ear canal microbiota.

View Article and Find Full Text PDF

i-Motifs (iMs) are quadruplex nucleic acid conformations that form in cytosine-rich regions. Because of their acidic pH dependence, iMs were thought to form only in vitro. The recent development of an iM-selective antibody, iMab, has allowed iM detection in cells, which revealed their presence at gene promoters and their cell cycle dependence.

View Article and Find Full Text PDF

The respiratory tract is colonized with low-density microbial communities, which have been shown to impact human respiratory health through microbiota-host interactions. However, a lack of fast and cost-effective nucleic acid extraction method for low-microbial biomass samples hinders investigation of respiratory microbiota. Here, we performed a pilot study to assess the suitability of the NAxtra nucleic acid extraction protocol for profiling bacterial microbiota in respiratory samples.

View Article and Find Full Text PDF

Incorporation of microgastropoda species provides novel insights into phylogeny of Trochoidea (Gastropoda: Vetigastropoda).

Comp Biochem Physiol Part D Genomics Proteomics

January 2025

Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China; Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China.

Trochoidea is the richest and most diverse group within Vetigastropoda, serving as one of the main focuses on studies of marine ecology and systematics. Both morphological and molecular studies have sought to resolve the phylogenetic framework of Trochoidea; however, the phylogenetic relationships among some lineages remain controversial. In order to explore the phylogenetic relationships within Trochoidea, we sequenced the mitochondrial genomes of 9 trochoids and analyzed them with data from 38 previously published mitochondrial genomes and 27 transcriptomic data representing 11 families within this group.

View Article and Find Full Text PDF

sp. nov., a novel endophytic bacterium with plant growth-promoting potential, isolated from root nodules of in Northwestern Algeria.

Int J Syst Evol Microbiol

January 2025

Dpartement de Biotechnologie, Laboratoire des Productions, Valorisations Vgtales et Microbiennes (LP2VM), Facult des Sciences de la Nature et de la Vie, B.P. 1505, El-Mnaour, Universit des Sciences et de la Technologie dOran Mohamed Boudiaf USTO-MB, Oran 31000, Algeria.

A thorough polyphasic taxonomic study, integrating genome-based taxonomic approaches, was carried out to characterize the RB5 strain isolated from root nodules of growing on the coastal dunes of Bousfer Beach (Oran, Algeria). The 16S rRNA gene sequence analysis revealed that strain RB5 had the highest similarity to LMG27940 (98.94%) and IzPS32d (98.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!