IRE1α-XBP1 signaling pathway, a potential therapeutic target in multiple myeloma.

Leuk Res

Department of Hematology and Blood and Marrow Transplantation, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Huan-Hu-Xi Road, Ti-Yuan-Bei, He Xi District, Tianjin 300060, People's Republic of China. Electronic address:

Published: October 2016

Multiple myeloma (MM), which arises from the uncontrolled proliferation of malignant plasma cells, is the second most commonly diagnosed hematologic malignancy in the United States. Despite the development and application of novel drugs and autologous stem cell transplantation (ASCT), MM remains an incurable disease and patients become more prone to MM relapse and drug resistance. It is extremely urgent to find novel targeted therapy for MM. To date, the classic signaling pathways underlying MM have included the RAS/RAF/MEK/ERK pathway, the JAK-STAT3 pathway, the PI3K/Akt pathway and the NF-KB pathway. The IRE1α-XBP1 signaling pathway is currently emerging as an important pathway involved in the development of MM. Moreover, it is closely associated with the effect of MM treatment and its prognosis. All these findings indicate that the IRE1α-XBP1 pathway can be a potential treatment target. Herein, we investigate the relationship between the IRE1α-XBP1 pathway and MM and discuss the functions of IRE1α-XBP1-targeted drugs in the treatment of MM.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.leukres.2016.07.006DOI Listing

Publication Analysis

Top Keywords

pathway
9
ire1α-xbp1 signaling
8
signaling pathway
8
pathway potential
8
multiple myeloma
8
ire1α-xbp1 pathway
8
ire1α-xbp1
4
potential therapeutic
4
therapeutic target
4
target multiple
4

Similar Publications

Psychological distress, including anxiety or mood disorders, emanates from the onset of chronic/unpredictable stressful events. Symptoms in the form of maladaptive behaviors are learned and difficult to treat. While the origin of stress-induced disorders seems to be where learning and stress intersect, this relationship and molecular pathways involved remain largely unresolved.

View Article and Find Full Text PDF

Climate-driven distribution shifts of Iranian amphibians and identification of refugia and hotspots for effective conservation.

Sci Rep

December 2024

Department of Environmental Science and Engineering, Faculty of Natural Resources, University of Jiroft, Jiroft, Iran.

This study investigates the potential impacts of climate change on the distribution of Iranian amphibian species and identifies refugia and biodiversity hotspots to inform effective conservation strategies. The study employed ensemble species distribution models to assess the impacts of climate change on 19 Iranian amphibian species. We analyzed future scenarios (2041-2060 & 2081-2100) under a high-emission pathway to identify potential range shifts and refugia (areas with stable or newly suitable climate).

View Article and Find Full Text PDF

Diabetes nephropathy (DN) is a prevalent and severe microvascular diabetic complication. Despite the recent developments in germacrone-based therapies for DN, the underlying mechanisms of germacrone in DN remain poorly understood. This study used comprehensive bioinformatics analysis to identify critical microRNAs (miRNAs) and the potential underlying pathways related to germacrone activities.

View Article and Find Full Text PDF

Nursing activity recognition has immense importance in the development of smart healthcare management and is an extremely challenging area of research in human activity recognition. The main reasons are an extreme class-imbalance problem and intra-class variability depending on both the subject and the recipient. In this paper, we apply a unique two-step feature extraction, coupled with an intermediate feature 'Angle' and a new feature called mean min max sum to render the features robust against intra-class variation.

View Article and Find Full Text PDF

This study investigates the potential treatment of breast cancer utilizing Gentiana robusta King ex Hook. f. (QJ) through an integrated approach involving network pharmacology, molecular docking, and molecular dynamics simulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!