Deep Brain Stimulation of the Basolateral Amygdala: Targeting Technique and Electrodiagnostic Findings.

Brain Sci

Research and Development Service, VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA.

Published: August 2016

The amygdala plays a critical role in emotion regulation. It could prove to be an effective neuromodulation target in the treatment of psychiatric conditions characterized by failure of extinction. We aim to describe our targeting technique, and intra-operative and post-operative electrodiagnostic findings associated with the placement of deep brain stimulation (DBS) electrodes in the amygdala. We used a transfrontal approach to implant DBS electrodes in the basolateral nucleus of the amygdala (BLn) of a patient suffering from severe post-traumatic stress disorder. We used microelectrode recording (MER) and awake intra-operative neurostimulation to assist with the placement. Post-operatively, the patient underwent monthly surveillance electroencephalograms (EEG). MER predicted the trajectory of the electrode through the amygdala. The right BLn showed a higher spike frequency than the left BLn. Intra-operative neurostimulation of the BLn elicited pleasant memories. The monthly EEG showed the presence of more sleep patterns over time with DBS. BLn DBS electrodes can be placed using a transfrontal approach. MER can predict the trajectory of the electrode in the amygdala and it may reflect the BLn neuronal activity underlying post-traumatic stress disorder PTSD. The EEG findings may underscore the reduction in anxiety.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5039457PMC
http://dx.doi.org/10.3390/brainsci6030028DOI Listing

Publication Analysis

Top Keywords

dbs electrodes
12
deep brain
8
brain stimulation
8
targeting technique
8
electrodiagnostic findings
8
transfrontal approach
8
amygdala bln
8
post-traumatic stress
8
stress disorder
8
intra-operative neurostimulation
8

Similar Publications

Deep brain stimulation (DBS), a proven treatment for movement disorders, also holds promise for the treatment of psychiatric and cognitive conditions. However, for DBS to be clinically effective, it may require DBS technology that can alter or trigger stimulation in response to changes in biomarkers sensed from the patient's brain. A growing body of evidence suggests that such adaptive DBS is feasible, it might achieve clinical effects that are not possible with standard continuous DBS and that some of the best biomarkers are signals from the cerebral cortex.

View Article and Find Full Text PDF

Background: T thermometry is considered a straight method for the safety monitoring of patients with deep brain stimulation (DBS) electrodes against radiofrequency-induced heating during Magnetic Resonance Imaging (MRI), requiring different sequences and methods.

Objective: This study aimed to compare two T thermometry methods and two low specific absorption rate (SAR) imaging sequences in terms of the output image quality.

Material And Methods: In this experimental study, a gel phantom was prepared, resembling the brain tissue properties with a copper wire inside.

View Article and Find Full Text PDF

Medication-refractory focal epilepsy poses a significant challenge, with approximately 30% of patients ineligible for surgery due to the involvement of eloquent cortex in the epileptogenic network. For such patients with limited surgical options, electrical neuromodulation represents a promising alternative therapy. In this study, we investigate the potential of non-invasive temporal interference (TI) electrical stimulation to reduce epileptic biomarkers in patients with epilepsy by comparing intracerebral recordings obtained before, during, and after TI stimulation, and to those recorded during low and high kHz frequency (HF) sham stimulation.

View Article and Find Full Text PDF

While deep brain stimulation (DBS) remains an effective therapy for Parkinson's disease (PD), sources of variance in patient outcomes are still not fully understood, underscoring a need for better prognostic criteria. Here we leveraged routinely collected T1-weighted (T1-w) magnetic resonance imaging (MRI) data to derive patient-specific measures of brain structure and evaluate their usefulness in predicting changes in PD medications in response to DBS. Preoperative T1-w MRI data from 231 patients with PD were used to extract regional measures of fractal dimension (FD), sensitive to the structural complexities of cortical and subcortical areas.

View Article and Find Full Text PDF

To develop reliable, valid, and efficient measures of obsessive-compulsive disorder (OCD) severity, comorbid depression severity, and total electrical energy delivered (TEED) by deep brain stimulation (DBS), we trained and compared random forests regression models in a clinical trial of participants receiving DBS for refractory OCD. Six participants were recorded during open-ended interviews at pre- and post-surgery baselines and then at 3-month intervals following DBS activation. Ground-truth severity was assessed by clinical interview and self-report.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!