Background: Previous studies indicate that the design of streets and sidewalks can influence physical activity among residents. Park features also influence park use and park-based physical activity. Although individuals can walk on streets and sidewalks, walking loops in parks offer a setting to walk in nature and to avoid interruptions from traffic.
Objectives: Here we describe the use of walking loops in parks and compare the number of park users and their physical activity in urban neighborhood parks with and without walking loops.
Methods: We analyzed data from the National Study of Neighborhood Parks in which a representative sample of neighborhood parks (n = 174) from 25 U.S. cities with > 100,000 population were observed systematically to document facilities and park users by age group and sex. We compared the number of people and their physical activity in parks with and without walking loops, controlling for multiple factors, including park size, facilities, and population density.
Results: Overall, compared with parks without walking loops, on average during an hourly observation, parks with walking loops had 80% more users (95% CI: 42, 139%), and levels of moderate-to-vigorous physical activity were 90% higher (95% CI: 49, 145%). The additional park use and park-based physical activity occurred not only on the walking loops but throughout the park.
Conclusions: Walking loops may be a promising means of increasing population level physical activity. Further studies are needed to confirm a causal relationship. Citation: Cohen DA, Han B, Evenson KR, Nagel C, McKenzie TL, Marsh T, Williamson S, Harnik P. 2017. The prevalence and use of walking loops in neighborhood parks: a national study. Environ Health Perspect 125:170-174; http://dx.doi.org/10.1289/EHP293.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5289910 | PMC |
http://dx.doi.org/10.1289/EHP293 | DOI Listing |
Nat Photonics
October 2024
Institut national de la recherche scientifique, Centre Énergie Matériaux Télécommunications, Varennes, Quebec Canada.
Quantum walks on photonic platforms represent a physics-rich framework for quantum measurements, simulations and universal computing. Dynamic reconfigurability of photonic circuitry is key to controlling the walk and retrieving its full operation potential. Universal quantum processing schemes based on time-bin encoding in gated fibre loops have been proposed but not demonstrated yet, mainly due to gate inefficiencies.
View Article and Find Full Text PDFThe random walk of photons in a tight-binding lattice is known to exhibit diffusive motion similar to classical random walks under decoherence, clearly illustrating the quantum-to-classical transition. In this study, we reveal that the random walk of intense classical light under dephasing dynamics can disentangle quantum and ensemble averaging, making it possible to observe subdiffusive walker dynamics, i.e.
View Article and Find Full Text PDFGenome Res
October 2024
Molecular Biotechnology Center "Guido Tarone," Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Torino, Italy
Philos Trans R Soc Lond B Biol Sci
October 2024
Department of Kinesiology, The University of Georgia, Athens, GA 30602, USA.
Each individual's movements are sculpted by constant interactions between sensorimotor and sociocultural factors. A theoretical framework grounded in motor control mechanisms articulating how sociocultural and biological signals converge to shape movement is currently missing. Here, we propose a framework for the emerging field of aiming to provide a conceptual space and vocabulary to help bring together researchers at this intersection.
View Article and Find Full Text PDFJ Exp Biol
August 2024
Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA 92697, USA.
The isometric force-length (F-L) and isotonic force-velocity (F-V) relationships characterize the contractile properties of skeletal muscle under controlled conditions, yet it remains unclear how these properties relate to in vivo muscle function. Here, we map the in situ F-L and F-V characteristics of guinea fowl (Numida meleagris) lateral gastrocnemius (LG) to the in vivo operating range during walking and running. We test the hypothesis that muscle fascicles operate on the F-L plateau, near the optimal length for force (L0) and near velocities that maximize power output (Vopt) during walking and running.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!