This paper considers the problem of building adaptive fuzzy-logic traffic control systems (AFLTCS) to deal with information fuzziness and uncertainty in case of heavy traffic streams. Methods of formal description of traffic control on the crossroads based on fuzzy sets and fuzzy logic are proposed. This paper also provides efficient algorithms for implementing AFLTCS and develops the appropriate simulation models to test the efficiency of suggested approach.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4970305 | PMC |
http://dx.doi.org/10.1155/2016/6719459 | DOI Listing |
Sensors (Basel)
December 2024
APM PRO, Chochołowska 28, 43-346 Bielsko-Biała, Poland.
This study presents a detailed analysis of the stability of weigh-in-motion sensors used at vehicle weighing stations. The objective of this research was a long-term assessment of reading variability, with a particular focus on the sensors' application in automated measurement stations. These investigations constitute a critical component of modern traffic management systems and vehicle overload control.
View Article and Find Full Text PDFSensors (Basel)
December 2024
School of Artificial Intelligence and Big Data, Henan University of Technology, Zhengzhou 450001, China.
In intelligent transportation systems, accurate vehicle target recognition within road scenarios is crucial for achieving intelligent traffic management. Addressing the challenges posed by complex environments and severe vehicle occlusion in such scenarios, this paper proposes a novel vehicle-detection method, YOLO-BOS. First, to bolster the feature-extraction capabilities of the backbone network, we propose a novel Bi-level Routing Spatial Attention (BRSA) mechanism, which selectively filters features based on task requirements and adjusts the importance of spatial locations to more accurately enhance relevant features.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Institute of Railway Research, University of Huddersfield, Huddersfield HD1 3DH, UK.
Conventional floating bridge systems used during emergency repairs, such as during wartime or after natural disasters, typically rely on passive rubber bearings or semi-active control systems. These methods often limit traffic speed, stability, and safety under dynamic conditions, including varying vehicle loads and fluctuating water levels. To address these challenges, this study proposes a novel Hydraulic Self-Adaptive Bearing System (HABS).
View Article and Find Full Text PDFSensors (Basel)
December 2024
Electrical, Computer, and Biomedical Engineering, Toronto Metropolitan University, Toronto, ON M5B 2K3, Canada.
Autonomous technologies have revolutionized transportation, military operations, and space exploration, necessitating precise localization in environments where traditional GPS-based systems are unreliable or unavailable. While widespread for outdoor localization, GPS systems face limitations in obstructed environments such as dense urban areas, forests, and indoor spaces. Moreover, GPS reliance introduces vulnerabilities to signal disruptions, which can lead to significant operational failures.
View Article and Find Full Text PDFSensors (Basel)
December 2024
The State Key Laboratory for the Safety, Long-Life, Health Operation and Maintenance of Long-Span Bridges, Jiangsu Provincial Institute of Traffic Science (JSTI Group), Nanjing 210098, China.
The strain data acquired from structural health monitoring (SHM) systems of large-span bridges are often contaminated by a mixture of temperature-induced and vehicle-induced strain components, thereby complicating the assessment of bridge health. Existing approaches for isolating temperature-induced strains predominantly rely on statistical temperature-strain models, which can be significantly influenced by arbitrarily chosen parameters, thereby undermining the accuracy of the results. Additionally, signal processing techniques, including empirical mode decomposition (EMD) and others, frequently yield unstable outcomes when confronted with nonlinear strain signals.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!