To prevent rereplication of genomic segments, the eukaryotic cell cycle is divided into two nonoverlapping phases. During late mitosis and G1 replication origins are "licensed" by loading MCM2-7 double hexamers and during S phase licensed replication origins activate to initiate bidirectional replication forks. Replication forks can stall irreversibly, and if two converging forks stall with no intervening licensed origin-a "double fork stall" (DFS)-replication cannot be completed by conventional means. We previously showed how the distribution of replication origins in yeasts promotes complete genome replication even in the presence of irreversible fork stalling. This analysis predicts that DFSs are rare in yeasts but highly likely in large mammalian genomes. Here we show that complementary strand synthesis in early mitosis, ultrafine anaphase bridges, and G1-specific p53-binding protein 1 (53BP1) nuclear bodies provide a mechanism for resolving unreplicated DNA at DFSs in human cells. When origin number was experimentally altered, the number of these structures closely agreed with theoretical predictions of DFSs. The 53BP1 is preferentially bound to larger replicons, where the probability of DFSs is higher. Loss of 53BP1 caused hypersensitivity to licensing inhibition when replication origins were removed. These results provide a striking convergence of experimental and theoretical evidence that unreplicated DNA can pass through mitosis for resolution in the following cell cycle.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5047195 | PMC |
http://dx.doi.org/10.1073/pnas.1603252113 | DOI Listing |
Vet Sci
November 2024
Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225012, China.
Pigeon Newcastle disease (ND) is the most common viral infectious disease in the pigeon industry, caused by pigeon paramyxovirus type 1 (PPMV-1), a variant of chicken-origin Newcastle disease virus (NDV). Previous studies have identified significant amino acid differences between PPMV-1 and chicken-origin NDV at positions 347 and 349 in the hemagglutinin-neuraminidase (HN) protein, with PPMV-1 predominantly exhibiting glycine (G) at position 347 and glutamic acid (E) at position 349, while most chicken-origin NDVs show E at position 347 and aspartic acid (D) at position 349. However, the impact of these amino acid substitutions remains unclear.
View Article and Find Full Text PDFClin Spine Surg
December 2024
Department of Orthopaedic Surgery, Rothman Orthopaedic Institute at Thomas Jefferson University Hospital, Philadelphia, PA.
Study Design: Retrospective cohort.
Objective: To analyze the annual trends in the most prevalent topics, journals, and geographic regions of the top 100 spine surgery articles, as determined by altmetric attention scores (AASs). We also describe the relationship between AAS and traditional article metrics.
Emerg Microbes Infect
December 2024
Host-pathogen interactions (HPI) and Disease Intervention and Prevention (DIP) programs, Texas Biomedical Research Institute, San Antonio, TX 78227, USA.
The host range of HPAIV H5N1 was recently expanded to include ruminants, particularly dairy cattle in the United States (US). Shortly after, human H5N1 infection was reported in a dairy worker in Texas following exposure to infected cattle. Herein, we rescued the cattle-origin influenza A/bovine/Texas/24-029328-02/2024(H5N1, rHPbTX) and A/Texas/37/2024(H5N1, rHPhTX) viruses, identified in dairy cattle and human, respectively, and their low pathogenic forms, rLPbTX and rLPhTX, with monobasic HA cleavage sites.
View Article and Find Full Text PDFNucleic Acids Res
December 2024
Dept. of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA.
Homologous recombination is a key evolutionary force that varies considerably across bacterial species. However, how the landscape of homologous recombination varies across genes and within individual genomes has only been studied in a few species. Here, we used Approximate Bayesian Computation to estimate the recombination rate along the genomes of 145 bacterial species.
View Article and Find Full Text PDFFront Immunol
December 2024
Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.
Introduction: To analyze the molecular pathogenesis of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), a small animal model such as mice is needed: human angiotensin converting enzyme 2 (hACE2), the receptor of SARS-CoV-2, needs to be expressed in the respiratory tract of mice.
Methods: We conferred SARS-CoV-2 susceptibility in mice by using an adenoviral vector expressing hACE2 driven by an elongation factor 1α (EF1α) promoter with a leftward orientation.
Results: In this model, severe pneumonia like human COVID-19 was observed in SARS-CoV-2-infected mice, which was confirmed by dramatic infiltration of inflammatory cells in the lung with efficient viral replication.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!