Biological activity and binding properties of [Ru(II)(dcbpy)2Cl2] complex to bovine serum albumin, phospholipase A2 and glutathione.

Biometals

Department of Physical Chemistry, Vinča Institute of Nuclear Sciences, University of Belgrade, Mike Petrovića Alasa 12-14, Belgrade, 11 000, Serbia.

Published: October 2016

Ruthenium compounds are highly regarded as metallo-drug candidates. Many studies have focused their attention on the interaction between ruthenium complexes with their possible biological targets. The interaction of ruthenium complexes with transport proteins, enzymes and peptides is of great importance for understanding their biodistribution and mechanism of action, therefore, the development of an anti-cancer therapy involving ruthenium complexes has recently shifted from DNA targeting towards protein targeting. With the aim of gaining insight into possible interactions between ruthenium complexes with biologically relevant proteins, we have studied the interaction of cis-dichlorobis(2,2'-bipyridyl-4,4'-dicarboxylic acid)ruthenium(II) complex [Ru(II)(dcbpy)2Cl2], which previously showed good potency in photo-dynamic chemotherapy, with bovine serum albumin (BSA), phospholipase A2 (PLA2) and glutathione (GSH). Binding constants and possible number of binding sites to mentioned proteins and peptide are investigated by ultraviolet-visible spectroscopy and Matrix-Assisted Laser Desorption Ionization Mass Spectrometry (MALDI TOF MS). The complex binding affinities were in the following order: PLA2 > BSA > GSH. Moreover, genotoxic profile of the complex, tested on peripheral blood lymphocytes as a model system, was also promising.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10534-016-9964-yDOI Listing

Publication Analysis

Top Keywords

ruthenium complexes
16
bovine serum
8
serum albumin
8
interaction ruthenium
8
ruthenium
5
biological activity
4
binding
4
activity binding
4
binding properties
4
properties [ruiidcbpy2cl2]
4

Similar Publications

The idea of coordinating biologically active ligand systems to metal centers to exploit their synergistic effects has gained momentum. Therefore, in this report, three Ru complexes - of morpholine-derived thiosemicarbazone ligands have been prepared and characterized by spectroscopy and HRMS along with the structure of through a single-crystal X-ray diffraction study. The solution stability of - was tested using conventional techniques such as UV-vis and HRMS.

View Article and Find Full Text PDF

Photoactivatable metal complexes offer the prospect of novel drugs with low side effects and new mechanisms of action to combat resistance to current therapy. We highlight recent progress in the design of platinum, ruthenium, iridium, gold and other transition metal complexes, especially for applications as anticancer and anti-infective agents. In particular, understanding excited state chemistry related to identification of the bioactive species (excited state metallomics/pharmacophores) is important.

View Article and Find Full Text PDF

Dye sensitized solar cells: Meta-analysis of effect sensitizer-type on photovoltaic efficiency.

Heliyon

January 2025

Grupo de Investigación en Fotoquímica y Fotobiología, Programa de Química, Facultad de Ciencias Básicas, Universidad Del Atlántico, Puerto Colombia, 81007, Colombia.

Since Dye-Sensitized Solar Cells (DSSCs) was created, a versatile and cost-effective alternative among photovoltaic technology options for power generation and energy transition to combat climate change have emerged. The theoretical and experimental knowledge of DSSCs have increased in regard to their operation in the last three decades of development; it includes the device's components, as well as the most recent innovations in their application and forms of activation. In this work paper, we presented a meta-study of photovoltaic characterization parameters, 329 scientific reports of DSSCs were considered to compare three types of sensitizers (Organometallics, non-metal organic dyes and, natural dyes).

View Article and Find Full Text PDF

Accessing iridium Cp* as a cofactor for artificial metalloenzymes.

J Inorg Biochem

January 2025

Yusuf Hamied Department of Chemistry, Lensfield Rd, Cambridge CB2 1EW, UK.

By introducing new-to-nature transformations, artificial metalloenzymes hold great potential for expanding the biosynthetic toolbox. The chemistry of an active cofactor in these enzymes is highly dependent on how the holoprotein is assembled, potentially limiting the choice of organometallic complexes amenable to incorporation and ability of the protein structure to influence the metal centre. We have previously reported a method utilising ligand exchange as a means to introduce ruthenium-arene fragments into a four-helix bundle protein.

View Article and Find Full Text PDF

Binuclear ruthenium complexes have been investigated for potential DNA-targeted therapeutic and diagnostic applications. Studies of DNA threading intercalation, in which DNA base pairs must be broken for intercalation, have revealed means of optimizing a model binuclear ruthenium complex to obtain reversible DNA-ligand assemblies with the desired properties of high affinity and slow kinetics. Here, we used single-molecule force spectroscopy to study a binuclear ruthenium complex with a longer semi-rigid linker relative to the model complex.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!