Background: The radiopharmaceutical (131)I-meta-iodobenzylguanidine ((131)I-MIBG) is an effective treatment for neuroblastoma. However, maximal therapeutic benefit from (131)I-MIBG is likely to be obtained by its combination with chemotherapy. We previously reported enhanced antitumour efficacy of (131)I-MIBG by inhibition of the poly(ADP-ribose) polymerase-1 (PARP-1) DNA repair pathway using the phenanthridinone derivative PJ34. Recently developed alternative PARP-1 inhibitors have greater target specificity and are expected to be associated with reduced toxicity to normal tissue. Therefore, our purpose was to determine whether the more specific PARP-1 inhibitors rucaparib and olaparib enhanced the efficacy of X-radiation or (131)I-MIBG.

Methods: Radiosensitisation of SK-N-BE(2c) neuroblastoma cells or noradrenaline transporter gene-transfected glioma cells (UVW/NAT) was investigated using clonogenic assay. Propidium iodide staining and flow cytometry was used to analyse cell cycle progression. DNA damage was quantified by the phosphorylation of H2AX (γH2AX).

Results: By combining PARP-1 inhibition with radiation treatment, it was possible to reduce the X-radiation dose or (131)I-MIBG activity concentration required to achieve 50 % cell kill by approximately 50 %. Rucaparib and olaparib were equally effective inhibitors of PARP-1 activity. X-radiation-induced DNA damage was significantly increased 2 h after irradiation by combination with PARP-1 inhibitors (10-fold greater DNA damage compared to untreated controls; p < 0.01). Moreover, combination treatment (i) prevented the restitution of DNA, exemplified by the persistence of 3-fold greater DNA damage after 24 h, compared to untreated controls (p < 0.01) and (ii) induced greater G2/M arrest (p < 0.05) than either single agent alone.

Conclusion: Rucaparib and olaparib sensitise cancer cells to X-radiation or (131)I-MIBG treatment. It is likely that the mechanism of radiosensitisation entails the accumulation of unrepaired radiation-induced DNA damage. Our findings suggest that the administration of PARP-1 inhibitors and (131)I-MIBG to high risk neuroblastoma patients may be beneficial.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4982014PMC
http://dx.doi.org/10.1186/s12885-016-2656-8DOI Listing

Publication Analysis

Top Keywords

parp-1 inhibitors
16
rucaparib olaparib
12
dna damage
12
inhibitors rucaparib
8
treatment neuroblastoma
8
parp-1
7
inhibitors
5
evaluation vitro
4
vitro parp-1
4
olaparib radiosensitisers
4

Similar Publications

CHD6 has poly(ADP-ribose)- and DNA-binding domains and regulates PARP1/2-trapping inhibitor sensitivity via abasic site repair.

Nat Commun

January 2025

Robson DNA Science Centre, Charbonneau Cancer Institute, Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.

To tolerate oxidative stress, cells enable DNA repair responses often sensitive to poly(ADP-ribose) (PAR) polymerase 1 and 2 (PARP1/2) inhibition-an intervention effective against cancers lacking BRCA1/2. Here, we demonstrate that mutating the CHD6 chromatin remodeler sensitizes cells to PARP1/2 inhibitors in a manner distinct from BRCA1, and that CHD6 recruitment to DNA damage requires cooperation between PAR- and DNA-binding domains essential for nucleosome sliding activity. CHD6 displays direct PAR-binding, interacts with PARP-1 and other PAR-associated proteins, and combined DNA- and PAR-binding loss eliminates CHD6 relocalization to DNA damage.

View Article and Find Full Text PDF

PARP-1 has been linked to the progression of several types of cancer. We have recently reported that PARP-1 influences tumor progression in CRC through the regulation of CSCs in a p53-dependent manner. In this study, we propose that nitric oxide (NO) produced by inducible nitric oxide synthase (iNOS) could act as a mediator.

View Article and Find Full Text PDF

Poly(ADP-ribose) polymerase-1 (PARP-1) is the key enzyme among other PARPs for post-translational modification of DNA repair proteins. It has four functional domains for DNA-binding, automodification and enzymatic activity. PARP-1 participates in poly-ADP-ribosylation of itself or other proteins during DNA damage response.

View Article and Find Full Text PDF

A Theoretical Study on the Efficacy and Mechanism of Combined YAP-1 and PARP-1 Inhibitors in the Treatment of Glioblastoma Multiforme Using Peruvian Maca .

Curr Issues Mol Biol

January 2025

Centro de Investigación en Ingeniería Molecular-CIIM, Universidad Católica de Santa María, Urb. San José s/n, Umacollo, Arequipa 04013, Peru.

Glioblastoma multiforme (GBM) is one of the most aggressive and treatment-resistant forms of brain cancer. Current therapeutic strategies, including surgery, chemotherapy, and radiotherapy, often fail due to the tumor's ability to develop resistance. The proteins YAP-1 (Yes-associated protein 1) and PARP-1 (Poly-(ADP-ribose)-polymerase-1) have been implicated in this resistance, playing crucial roles in cell proliferation and DNA repair mechanisms, respectively.

View Article and Find Full Text PDF

Designing an anticancer Pd(II) complex as poly(ADP-ribose) polymerase 1 inhibitor.

Int J Biol Macromol

January 2025

School of Biological and Food Engineering, Guangxi Science & Technology Normal University, Laibin, Guangxi 546199, China. Electronic address:

Targeting DNA repair mechanisms, particularly PARP-1 inhibition, has emerged as a promising strategy for developing anticancer therapies. we designed and synthesized two 2-thiazolecarboxaldehyde thiosemicarbazone palladium(II) complexes (C1 and C2), and evaluated their anti-cancer activities. These Pd(II) complexes exhibited potent PARP-1 enzyme inhibition and demonstrated considerable antiproliferative activity against various cancer cell lines.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!