The brain is an intricate network, not only structurally but also functionally. On the functional level, connectivity in the brain is organized in separable yet interacting networks that support information processing by maintaining a ready state, even in the absence of external stimulation. It has been hypothesized that an insular-opercular network underlies the processing of emotionally salient information and that individual differences in functional connectivity within this network correspond to individual differences in trait anxiety. Here, we tested this relationship by applying graph analysis to multiple regions of interests delineating the insular-opercular network to estimate the characteristic path length that quantifies the overall information exchange efficiency within a given network. We found that people scoring high on the anxiety-related temperament-dimension harm avoidance had decreased insular-opercular network efficiency in the resting state, as indicated by a higher characteristic path length. Furthermore, people scoring high on harm avoidance showed generally reduced functional connectivity between brain regions; the relationship between harm avoidance and insular-opercular network efficiency remained significant when controlling for mean connectivity within this network. No such results were found for other resting-state networks. The results provide insights into how personality is organized in the human brain and point toward clinically relevant endophenotypes for affective and mood disorders.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3758/s13415-016-0451-2 | DOI Listing |
Transl Psychiatry
December 2024
School of Computer Science and Technology (School of Data Science), Taiyuan University of Technology, Taiyuan, 030024, China.
Bipolar disorder (BD) is a neuropsychiatric disorder characterized by severe disturbance and fluctuation in mood. Dynamic functional connectivity (dFC) has the potential to more accurately capture the evolving processes of emotion and cognition in BD. Nevertheless, prior investigations of dFC typically centered on larger time scales, limiting the sensitivity to transient changes.
View Article and Find Full Text PDFNeuropsychologia
November 2024
Department of Experimental Psychology, University of Oxford, United Kingdom; Nuffield Department of Clinical Neurosciences, University of Oxford, United Kingdom.
Background: The purpose of this study was to identify patterns of structural disconnection and multivariate lesion-behaviour relationships associated with post-stroke deficits across six commonly impacted cognitive domains: executive function, language, memory, numerical processing, praxis, and visuospatial attention.
Methods: Stroke survivors (n = 593) completed a brief domain-specific cognitive assessment (the Oxford Cognitive Screen (OCS)) during acute hospitalisation. Network-level and multivariate (sparce canonical correlation) lesion mapping analyses were conducted to identify focal neural correlates and distributed patterns of structural disconnection associated with impairment on each of the 16 OCS measures.
J Clin Neurophysiol
October 2024
Division of Neurology, Comprehensive Epilepsy Center, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, U.S.A.
Exp Neurobiol
April 2024
Ewha Brain Institute, Ewha Womans University, Seoul 03760, Korea.
Cognitive dysfunction, a significant complication of type 2 diabetes mellitus (T2DM), can potentially manifest even from the early stages of the disease. Despite evidence of global brain atrophy and related cognitive dysfunction in early-stage T2DM patients, specific regions vulnerable to these changes have not yet been identified. The study enrolled patients with T2DM of less than five years' duration and without chronic complications (T2DM group, n=100) and demographically similar healthy controls (control group, n=50).
View Article and Find Full Text PDFEmotion
September 2024
Department of Neuroradiology, Research Center of Neurology.
Aging is known to be associated with a decline in interoceptive abilities and changes in emotional processing, including alexithymia. As the brain areas supporting interoceptive awareness participate in the perception of emotion, we suggested that interoceptive decline and alexithymia in older adults may share common neural ground. To test this hypothesis, we administered functional magnetic resonance imaging-based heartbeat detection task to 62 adults of diverse ages (range 18-73) and evaluated a larger sample of older and younger adults using questionnaires characterizing interoceptive sensibility, alexithymia, and depressive attitudes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!