A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Measurement of strains experienced by viscerofugal nerve cell bodies during mechanosensitive firing using digital image correlation. | LitMetric

Measurement of strains experienced by viscerofugal nerve cell bodies during mechanosensitive firing using digital image correlation.

Am J Physiol Gastrointest Liver Physiol

School of Computer Science, Engineering and Mathematics, Flinders University, Adelaide, Australia.

Published: November 2016

Mechanosensory neurons detect physical events in the local environments of the tissues that they innervate. Studies of mechanosensitivity of neurons or nerve endings in the gut have related their firing to strain, wall tension, or pressure. Digital image correlation (DIC) is a technique from materials engineering that can be adapted to measure the local physical environments of afferent neurons at high resolution. Flat-sheet preparations of guinea pig distal colon were set up with arrays of tissue markers in vitro. Firing of single viscerofugal neurons was identified in extracellular colonic nerve recordings. The locations of viscerofugal nerve cell bodies were inferred by mapping firing responses to focal application of the nicotinic receptor agonist 1,1-dimethyl-4-phenylpiperazinium iodide. Mechanosensory firing was recorded during load-evoked uniaxial or biaxial distensions. Distension caused movement of surface markers which was captured by video imaging. DIC tracked the markers, interpolating the mechanical state of the gut at the location of the viscerofugal nerve cell body. This technique revealed heterogeneous load-evoked strain within preparations. Local strains at viscerofugal nerve cell bodies were usually smaller than global strain measurements and correlated more closely with mechanosensitive firing. Both circumferential and longitudinal strain activated viscerofugal neurons. Simultaneous loading in circumferential and longitudinal axes caused the highest levels of viscerofugal neuron firing. Multiaxial strains, reflecting tissue shearing and changing area, linearly correlated with mechanosensory firing of viscerofugal neurons. Viscerofugal neurons were mechanically sensitive to both local circumferential and local longitudinal gut strain, and appear to lack directionality in their stretch sensitivity.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpgi.00397.2015DOI Listing

Publication Analysis

Top Keywords

viscerofugal nerve
16
nerve cell
16
viscerofugal neurons
16
cell bodies
12
viscerofugal
9
firing
8
mechanosensitive firing
8
digital image
8
image correlation
8
mechanosensory firing
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!