Unlabelled: Biomaterial-associated infections, in particular, catheter-associated infections (CAI) are a major problem in clinical practice due to their ability to resist antimicrobial treatment and the host immune system. This study aimed to co-immobilize the antimicrobial lipopeptide Palm and the enzyme DNase I to introduce both antimicrobial and anti-adhesive functionalities to polydimethylsiloxane (PDMS) material, using dopamine chemistry. Surface characterization confirmed the immobilization of both compounds and no leaching of Palm from the surfaces for up to 5days. Co-immobilization of both agents resulted in a bifunctional coating with excellent surface antimicrobial and anti-biofilm properties against both Staphylococcus aureus and Pseudomonas aeruginosa. The modified surfaces demonstrated superior biocompatibility. To better discriminate co-adhesion of both species on modified surfaces, PNA FISH (Fluorescence in situ hybridization using peptide nucleic acid probes) was employed, and results showed that P. aeruginosa was the dominant organism, with S. aureus adhering afterwards on P. aeruginosa agglomerates. Furthermore, Palm immobilization exhibited no propensity to develop bacterial resistance, as opposite to the immobilization of an antibiotic. The overall results highlighted that co-immobilization of Palm and DNase I holds great potential to be applied in the development of catheters.
Statement Of Significance: Catheter-associated infections (CAI) are the most common hospital-acquired infections worldwide. Several coating strategies have been proposed to fight these infections but most of them present some important limitations, including the emergence of resistant bacteria and toxicity concerns. The present work describes a two-step polydopamine-based surface modification strategy to successfully co-immobilize an antimicrobial peptide (Palm) and an enzyme targeting an important component of biofilm matrix (DNase I). This immobilization approach imparted polydimethylsiloxane surfaces with both anti-adhesive and antimicrobial properties against the adhesion of relevant bacteria as single and dual-species, with excellent stability and biocompatible and anti-biofilm properties, holding, therefore, great potential in the development of catheters able to prevent CAI.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.actbio.2016.08.010 | DOI Listing |
Int J Biol Macromol
February 2021
Bioprocess Engineering Department, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.
Candida antarctica lipase B (CALB) and Thermomyces lanuginose lipase (TLL) were co-immobilized on epoxy functionalized silica gel via an isocyanide-based multicomponent reaction. The immobilization process was carried out in water (pH 7) at 25 °C, rapidly (3 h) resulting in high immobilization yields (100%) with a loading of 10 mg enzyme/g support. The immobilized preparations were used to produce biodiesel by transesterification of palm oil.
View Article and Find Full Text PDFActa Biomater
September 2018
CEB - Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
Since most antibacterial coatings reported to fight biomaterial-associated infections (BAI) fail in completely preventing bacterial colonization, it is crucial to know the impact of that small fraction of adhered bacteria in BAI recrudescence. This study aims to understand the fate of Staphylococcus aureus able to adhere to an antimicrobial coating previously developed, in terms of potential development of bacterial resistance and their macrophage-mediated phagocytosis. Antimicrobial coating comprised the co-immobilization of Palm peptide and DNase I onto polydimethylsiloxane.
View Article and Find Full Text PDFActa Biomater
October 2016
CEB - Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
Unlabelled: Biomaterial-associated infections, in particular, catheter-associated infections (CAI) are a major problem in clinical practice due to their ability to resist antimicrobial treatment and the host immune system. This study aimed to co-immobilize the antimicrobial lipopeptide Palm and the enzyme DNase I to introduce both antimicrobial and anti-adhesive functionalities to polydimethylsiloxane (PDMS) material, using dopamine chemistry. Surface characterization confirmed the immobilization of both compounds and no leaching of Palm from the surfaces for up to 5days.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!