Salsolinol (1-methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline) is thought to regulate dopaminergic neurons and to act as a mediator in the neuroendocrine system. We have previously reported that exogenous salsolinol evokes enteric neuronal cell death, leading to the impairment of myenteric neurons density and abnormal intestinal transit in rats. We also observed significant reduction of body weight, related to the disrupted gastrointestinal homeostasis. e aim of current study was to evaluate the influence of prolonged salsolinol administration body weight, food intake, adipose tissue accumulation and fad pad adipocyte morphological parameters assessed by image analysis. Male Wistar rats were subjected to continuous intraperitoneal low dosing of salsolinol - 200 mg/kg in total with ALZET osmotic mini-pumps (Durtec, USA) for 2 or 4 weeks with either normal or high-fat diet. Appropriate groups served as the controls. Food intake, body weight were measured each morning. Both epididymal fat pads were dissected, weighted and processed for routine hematoxylin and eosin staining. e following parameters: cell area, perimeter, long and short axis, aspect ratio and circularity factor were assessed in stained specimens with the image analysis system (Multiscan, Poland). Salsolinol administration significantly reduced total body mass with no differences in total food intake between the groups. The epididymal fat pad weight over final body mass ratio was lower in salsolinol treated rats on high fat diet in comparison with the control groups. e area, perimeter, short and long axis of the fad pad adipocytes were significantly decreased in salsolinol treated animals in comparison with relevant controls. Salsolinol targets some regulatory mechanisms concerned with the basic rat metabolism. Prolonged peripheral salsolinol administration in rats significantly decreases the adipocyte size, and such effect is related to the weight loss and reduced adipose tissue accumulation.
Download full-text PDF |
Source |
---|
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!