We propose an arsenic-capping/decapping method, allowing the growth of an epitaxial shell around the GaAs nanowire (NW) core which is exposed to an ambient atmosphere, and without the introduction of impurities. Self-catalyzed GaAs NW arrays were firstly grown on Si(111) substrates by solid-source molecular beam epitaxy. Aiming for protecting the active surface of the GaAs NW core, the arsenic-capping/decapping method has been applied. To validate the effect of this method, different core/shell NWs have been fabricated. Analyses highlight the benefit of the As capping-decapping method for further epitaxial shell growth: an epitaxial shell with a smooth surface is achieved in the case of As-capped-decapped GaAs NWs, comparable to the in situ grown GaAs/AlGaAs NWs. This As capping method opens a way for the epitaxial growth of heterogeneous material shells such as functional oxides using different reactors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c6nr04817j | DOI Listing |
Chem Mater
January 2025
Graduate School of Biomedical Science and Engineering, Koç University, Istanbul 34450, Türkiye.
AgBiS nanocrystals (NCs), composed of nontoxic, earth-abundant materials and exhibiting an exceptionally high absorption coefficient from visible to near-infrared (>10 cm), hold promise for photovoltaics but have lack of photoluminescence (PL) due to intrinsic nonradiative recombination and challenging shell growth. In this study, we reported a facile wet-chemical approach for the epitaxial growth of ZnS shell on AgBiS NCs, which triggered the observation of PL emission in the near-infrared (764 nm). Since high quality of the core is critical for epitaxial shell growth, we first obtained rock-salt structured AgBiS NCs with high crystallinity, nearly spherical shape and monodisperse size distribution (<6%) via a dual-ligand approach reacting Ag-Bi oleate with elemental sulfur in oleylamine.
View Article and Find Full Text PDFACS Nano
January 2025
Optoelectronic Materials Section, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands.
InP/ZnSe/ZnS core/shell/shell quantum dots are the most investigated quantum dot material for commercial applications involving visible light emission. The inner InP/ZnSe interface is complex since it is not charge balanced, and the InP surface is prone to oxidation. The role of oxidative defects at this interface has remained a topic of debate, with conflicting reports of both detrimental and beneficial effects on the quantum dot properties.
View Article and Find Full Text PDFNanoscale Horiz
January 2025
Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.
Upconverting nanoparticles (UCNPs) convert near-infrared (IR) light into higher-energy visible light, allowing them to be used in applications such as biological imaging, nano-thermometry, and photodetection. It is well known that the upconversion luminescent efficiency of UCNPs can be enhanced by using a host material with low phonon energies, but the use of low-vibrational-energy inorganic ligands and non-epitaxial shells has been relatively underexplored. Here, we investigate the functionalization of lanthanide-doped NaYF UCNPs with low-vibrational-energy SnS ligands.
View Article and Find Full Text PDFNanoscale
January 2025
The Canter for Photochemical Sciences and Department of Physics, Bowling Green State University, Bowling Green, Ohio 43403, USA.
Laser diodes based on solution-processed semiconductor quantum dots (QDs) present an economical and color-tunable alternative to traditional epitaxial lasers. However, their efficiency is significantly limited by non-radiative Auger recombination, a process that increases lasing thresholds and diminishes device longevity through excessive heat generation. Recent advancements indicate that these limitations can be mitigated by employing spherical quantum wells, or quantum shells (QSs), in place of conventional QDs.
View Article and Find Full Text PDFNanotechnology
January 2025
Laboratory of micro- and nanoelectronics, Saint Petersburg Electrotechnical University 'LETI', Prof. Popova st. 5, 197022 St.Petersburg, Russia.
The processes of electrochemical deposition of Ni on vertically aligned GaAs nanowires (NWs) grown by molecular-beam epitaxy (MBE) using Au as a growth catalyst on n-type Si(111) substrates were studied. Based on the results of electrochemical deposition, it was concluded that during the MBE synthesis of NWs the self-induced formation of conductive channels can occur inside NWs, thereby forming quasi core-shell NWs. Depending on the length of the channel compare to the NW heights and the parameters of electrochemical deposition, the different hybrid metal-semiconductor nanostructures, such as Ni nanoparticles on GaAs NW side walls, Ni clusters on top ends of GaAs NWs, core-shell GaAs/Ni NWs, were obtained.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!