There is intense interest in sodium-ion batteries as an alternative to lithium-ion batteries for electric storage applications because of the low-cost and abundant sodium resources. Na0.67Ni0.33-xMgxMn0.67O2 compounds (x = 0, 0.02, 0.05, 0.1, or 0.15) were prepared by a sol-gel method and used as a cathode for sodium-ion batteries. The X-ray powder diffraction measurements demonstrated that the obtained samples have a pure P2 phase. Na0.67Ni0.23Mg0.1Mn0.67O2 delivers an initial reversible capacity of 105 mAh g(-1) in the potential region from 2.0 to 4.5 V at a charge/discharge current density of 48 mA g(-1). Moreover, the cyclability is improved by doping Mg. The capacity of Na0.67Ni0.23Mg0.1Mn0.67O2 can remain at approximately 84.9 mAh g(-1) at a current density of 48 mA g(-1) after 100 cycles. The improved high rate performance of Na0.67Ni0.23Mg0.1Mn0.67O2 was attributed to the increased lattice parameters and d spacing of the Na(+) layer. Therefore, Mg-doped Na0.67Ni0.23Mg0.1Mn0.67O2 is a promising cathode for sodium-ion batteries with excellent rate and cyclic performance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.inorgchem.6b01515 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!