Background/aim: Enterococci play an important role in nosocomial infections. Therefore, this study investigates multidrug resistance (MDR)1 gene areas in the pathogenicity of enterococci and virulence genes in both vancomycin-sensitive enterococci (VSE) and vancomycin-resistant enterococci (VRE) strains.
Materials And Methods: Virulence genes and MDR genes of enterococci were investigated by polymerase chain reaction (PCR).
Results: We evaluated a total of 116 isolates, 93 being VRE and 23 being VSE. In this study, 95.6% of VRE (n = 93) were Enterococcus faecium (n = 89) and 4.3% were E. faecalis (n = 4), while 17.4% of VSE (n = 23) were E. faecium (n = 4) and 82.6% were E. faecalis (n = 19). The vanA MDR1 gene was detected in all VRE isolates. Among virulence genes, esp and hyl were detected in E. faecium, an enterococcus with the highest resistance to vancomycin, and gelE was detected in E. faecalis, an enterococcus with the highest sensitivity to vancomycin. Three or more virulence genes were identified only in VSE strains. We consider that it is a significant result that VSE had more virulence genes than VRE. Only esp was seen in VRE E. faecium strains.
Conclusion: This study includes experimental results on the association of virulence characteristics in VRE and VSE strains.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3906/sag-1412-86 | DOI Listing |
Vet Sci
December 2024
Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Animal Science and Technology, Foshan University, Foshan 528225, China.
Orf (ORF) is an acute disease caused by the Orf virus (ORFV), and poses a certain threat to animal and human health. Live attenuated vaccines play an important role in the prevention and control of ORF. The effectiveness of the live attenuated Orf virus vaccine is influenced by several factors, including the genomic match between the vaccine strain and circulating epidemic strains.
View Article and Find Full Text PDFJ Fungi (Basel)
December 2024
State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding 071000, China.
This study investigated the expression profiles of microRNA-like RNAs (milRNAs) in (), a key pathogen causing Apple replant disease (ARD), across spore to mycelium formation stages. Using small RNA sequencing (sRNA-seq) and bioinformatics, we identified and analyzed milRNAs, revealing their targeting of 2364 mRNAs involved in 20 functional categories, including metabolic and cellular processes, based on gene ontology (GO) analysis. An analysis of Kyoto Encyclopedia of Genes and Genomes (KEGG) showed that these mRNAs are related to carbohydrate and amino acid metabolism pathways.
View Article and Find Full Text PDFJ Fungi (Basel)
December 2024
Sanya Nanfan Research Institute, Hainan University, Sanya 572025, China.
A pathogen strain responsible for sweet potato stem and foliage scab disease was isolated from sweet potato stems. Through a phylogenetic analysis based on the rDNA internal transcribed spacer (ITS) region, combined with morphological methods, the isolated strain was identified as To comprehensively analyze the pathogenicity of the isolated strain from a genetic perspective, the whole-genome sequencing of HD-1 was performed using both the PacBio and Illumina platforms. The genome of HD-1 is about 26.
View Article and Find Full Text PDFJ Fungi (Basel)
December 2024
Warwick Crop Centre, School of Life Sciences, Wellesbourne Campus, University of Warwick, Warwick CV35 9EF, UK.
Parsnips () are a speciality UK crop with an economic value of at least 31M GBP annually. Currently, the major constraints to production are losses associated with root canker disease due to a range of fungal pathogens, among which is of most concern to growers. With limited research conducted on this species, this work aimed to provide a much-needed characterisation of isolates from across the UK, continental Europe, and New Zealand.
View Article and Find Full Text PDFJ Fungi (Basel)
December 2024
Leibniz Institute DSMZ, German Collection of Microorganisms and Cell Cultures, 38124 Braunschweig, Germany.
Helotiales, a diverse fungal order within Leotiomycetes (Ascomycota), comprises over 6000 species occupying varied ecological niches, from plant pathogens to saprobes and symbionts. Despite their importance, their genetic adaptations to temperature and environmental conditions are understudied. This study investigates temperature adaptations in infection genes and substrate degradation genes through a comparative genomics analysis of 129 Helotiales species, using the newly sequenced genomes of and .
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!