AI Article Synopsis

  • Profiling the aortic root perpendicularly to the fluoroscopic image enhances the success rate of TAVR procedures, and this study investigates the impact of the C-arm's X-ray beam on TAVR device visibility.
  • The study involved testing different sizes of Edwards Sapien XT valves in various field of views (FOV) to assess how their appearance changes when not centered in the fluoroscopic image.
  • Results indicated that a 32 cm FOV significantly alters the valve's appearance more than a 22 cm FOV, requiring greater C-arm rotation to achieve a coaxial view, which could impact implantation depth.

Article Abstract

Introduction: Profiling the Aortic root perpendicular to the fluoroscopic image plane will achieve a more successful implant position for trans-catheter aortic valve replacement (TAVR). This study aimed to investigate whether the divergent nature of the X-ray beam from the C-arm altered the appearance of the TAVR device.

Methods: Under bench-top testing, a 23, 26 and 29 mm Edwards Sapien XT valve was positioned coaxially at the bottom of a fluoroscopic image utilising 22 and 32 cm fields of view (FOV). The table was then moved so that the valve was positioned at the top of the image. The valve's appearance was scored using a previously published three tier classification tool (excellent, satisfactory and poor) and quantified with measurements. The number of degrees of C-arm rotation that were required to bring the valve back to a coaxial appearance was recorded.

Results: When using the 32 cm FOV, the valve's appearance changes from excellent to satisfactory. When a 22 cm FOV was used, the change is less marked. More C-arm rotation is required to bring the appearance back to coaxial with the 32 cm FOV.

Conclusion: Not maintaining the valve in the centre of the image can distort the valves appearance. This has the potential to affect the final implantation depth.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4968560PMC
http://dx.doi.org/10.1002/jmrs.131DOI Listing

Publication Analysis

Top Keywords

x-ray beam
8
edwards sapien
8
trans-catheter aortic
8
aortic valve
8
valve replacement
8
fluoroscopic image
8
valve positioned
8
valve's appearance
8
excellent satisfactory
8
c-arm rotation
8

Similar Publications

Simulations of the Potential for Diffraction Enhanced Imaging at 8 keV using Polycapillary Optics.

Biomed Phys Eng Express

January 2025

Physics Department, University at Albany, 1400 Washington Ave, Albany, New York, 12222-0100, UNITED STATES.

Conventional x-ray radiography relies on attenuation differences in the object, which often results in poor contrast in soft tissues. X-ray phase imaging has the potential to produce higher contrast but can be difficult to utilize. Instead of grating-based techniques, analyzer-based imaging, also known as diffraction enhanced imaging (DEI), uses a monochromator crystal with an analyzer crystal after the object.

View Article and Find Full Text PDF

Extreme ultraviolet (EUV) lithography is a cutting-edge technology in contemporary semiconductor chip manufacturing. Monitoring the EUV beam profiles is critical to ensuring consistent quality and precision in the manufacturing process. This study uncovers the practical use of fluorescent nanodiamonds (FNDs) coated on optical image sensors for profiling EUV and soft X-ray (SXR) radiation beams.

View Article and Find Full Text PDF

Operando X-Ray Tomoscopy of Laser Beam Welding.

Adv Sci (Weinh)

January 2025

Institute of Applied Materials, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109, Berlin, Germany.

The phenomena occurring in a weld seam during advancement of a laser beam over a metallic component are still under dispute. The occurrence and evolution of porosity and the occasional blowout of melt need to be understood. Here, a recently developed X-ray tomoscopy setup is applied, providing one hundred 3D images per second to capture the temporal evolution of the melt pool in an AlSi9Cu3(Fe) die-casting while a laser beam advances.

View Article and Find Full Text PDF

Objectives: To investigate the performance of a deep learning (DL) model for segmenting cone-beam computed tomography (CBCT) scans taken before and after mandibular horizontal guided bone regeneration (GBR) to evaluate hard tissue changes.

Materials And Methods: The proposed SegResNet-based DL model was trained on 70 CBCT scans. It was tested on 10 pairs of pre- and post-operative CBCT scans of patients who underwent mandibular horizontal GBR.

View Article and Find Full Text PDF

Background And Purpose: Radiotherapy for paediatric posterior fossa tumours may cause complications in the brainstem and upper spinal cord due to high doses. With proton therapy (PT) this risk may increase due to higher relative biological effectiveness (RBE) from elevated linear energy transfer (LET). This study assesses variations in LET in the brainstem and spinal cord in proton treatment plans from European centres.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!