Molecular Properties of Red Wine Compounds and Cardiometabolic Benefits.

Nutr Metab Insights

Postgraduate Program in Health Sciences: Cardiology, Institute of Cardiology of Rio Grande do Sul (IC/FUC), Porto Alegre, Rio Grande do Sul, Brazil.; Department of Nutrition, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil.

Published: August 2016

Wine has been used since the dawn of human civilization. Despite many health benefits, there is still a lot of discussion about the real properties of its components and its actions on cells and molecular interactions. A large part of these issues permeate the fine line between the amount of alcohol that causes problems to organic systems and the amount that could be beneficial for the health. However, even after the process of fermentation, wine conserves different organic compounds from grapes, such as polysaccharides, acids, and phenolic compounds, such as flavonoids and nonflavonoids. These substances have known anti-inflammatory and antioxidant capacities, and are considered as regulatory agents in cardiometabolic process. In this study, the main chemical components present in the wine, its interaction with molecules and biological mechanisms, and their interference with intra- and extracellular signaling are reviewed. Finally, the properties of wine that may benefit cardiovascular system are also revised.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4973766PMC
http://dx.doi.org/10.4137/NMI.S32909DOI Listing

Publication Analysis

Top Keywords

wine
5
molecular properties
4
properties red
4
red wine
4
wine compounds
4
compounds cardiometabolic
4
cardiometabolic benefits
4
benefits wine
4
wine dawn
4
dawn human
4

Similar Publications

Hanseniaspora species gained attention due to the ability of these species to ferment simple sugars and to actively contribute to the development of bouquet aromas in wine and cider fermentations. We present a chromosome-level assembly of an isolate of that would enhance its potential applications.

View Article and Find Full Text PDF

Objective: The purpose of this study is to explore the efficacy and safety of hematoporphyrin monomethyl ether mediated photodynamic therapy (HMME-PDT) in treating children with port-wine stains (PWS).

Method: Literature related to the topic was searched in PubMed, Embase, Cochrane Library, Web of Science, China National Knowledge Infrastructure, Wanfang, and China Science Technology Journal Database online databases. The quality of the literature was evaluated using the Effective Public Health Practice Project.

View Article and Find Full Text PDF

To explore the consumption patterns and demand for famous wines exported in Late Antiquity, such as Gaza wine and Cilician wine, several case studies were analyzed: studies involving excavation results from sites where Late Roman amphorae, such as the LRA 1 and LRA 4 types, were found. Several themes emerged from the analysis. First, Gaza jars used for the transportation of Gaza wine seem to be less frequent than LRA 1 amphorae used to transport Cilician wine.

View Article and Find Full Text PDF

Background: A deletion mutation in the degron tail of auxin coreceptor IAA2 was found to confer resistance to the herbicide 2,4-D in Sisymbrium orientale. Given the importance of auxin signalling in plant development, this study was conducted to investigate whether this deletion mutation may affect plant fitness.

Results: The F progeny of crosses with two resistant populations P2 (P2♂ × S♀) and P13 (P13♂ × S♀) were used in this study.

View Article and Find Full Text PDF

Mechanism of Exogenous Melatonin to Alleviate the Fermentation Performance of Saccharomyces cerevisiae Under Copper Stress.

J Pineal Res

March 2025

College of Enology, Shaanxi Provincial Key Laboratory of Viti-Viniculture, Shaanxi Engineering Research Center of Characteristic Fruit Directional Design and Machining, Northwest A&F University, Yangling, China.

Melatonin is involved in biological adverse stress response and enhances the ability of yeast to adapt to adverse conditions. This study investigated the mechanism of exogenous melatonin addition to Saccharomyces cerevisiae (S. cerevisiae) under copper stress.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!