Unlabelled: Kaposi's sarcoma-associated herpesvirus (KSHV) is the causative agent of commonly fatal malignancies of immunocompromised individuals, including primary effusion lymphoma (PEL) and Kaposi's sarcoma (KS). A hallmark of all herpesviruses is their biphasic life cycle-viral latency and the productive lytic cycle-and it is well established that reactivation of the KSHV lytic cycle is associated with KS pathogenesis. Therefore, a thorough appreciation of the mechanisms that govern reactivation is required to better understand disease progression. The viral protein replication and transcription activator (RTA) is the KSHV lytic switch protein due to its ability to drive the expression of various lytic genes, leading to reactivation of the entire lytic cycle. While the mechanisms for activating lytic gene expression have received much attention, how RTA impacts cellular function is less well understood. To address this, we developed a cell line with doxycycline-inducible RTA expression and applied stable isotope labeling of amino acids in cell culture (SILAC)-based quantitative proteomics. Using this methodology, we have identified a novel cellular protein (AT-rich interacting domain containing 3B [ARID3B]) whose expression was enhanced by RTA and that relocalized to replication compartments upon lytic reactivation. We also show that small interfering RNA (siRNA) knockdown or overexpression of ARID3B led to an enhancement or inhibition of lytic reactivation, respectively. Furthermore, DNA affinity and chromatin immunoprecipitation assays demonstrated that ARID3B specifically interacts with A/T-rich elements in the KSHV origin of lytic replication (oriLyt), and this was dependent on lytic cycle reactivation. Therefore, we have identified a novel cellular protein whose expression is enhanced by KSHV RTA with the ability to inhibit KSHV reactivation.
Importance: Kaposi's sarcoma-associated herpesvirus (KSHV) is the causative agent of fatal malignancies of immunocompromised individuals, including Kaposi's sarcoma (KS). Herpesviruses are able to establish a latent infection, in which they escape immune detection by restricting viral gene expression. Importantly, however, reactivation of productive viral replication (the lytic cycle) is necessary for the pathogenesis of KS. Therefore, it is important that we comprehensively understand the mechanisms that govern lytic reactivation, to better understand disease progression. In this study, we have identified a novel cellular protein (AT-rich interacting domain protein 3B [ARID3B]) that we show is able to temper lytic reactivation. We showed that the master lytic switch protein, RTA, enhanced ARID3B levels, which then interacted with viral DNA in a lytic cycle-dependent manner. Therefore, we have added a new factor to the list of cellular proteins that regulate the KSHV lytic cycle, which has implications for our understanding of KSHV biology.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5044832 | PMC |
http://dx.doi.org/10.1128/JVI.03262-15 | DOI Listing |
J Gen Virol
January 2025
Section for Pathogen Research, Institute for Infection and Immunity, St George's, University of London, London, SW17 0RE, UK.
Parainfluenza virus type 5 (PIV5) can cause either persistent or acute/lytic infections in a wide range of mammalian tissue culture cells. Here, we have generated PIV5 fusion (F)-expressing helper cell lines that support the replication of F-deleted viruses. As proof of the principle that F-deleted single-cycle infectious viruses can be used as safe and efficient expression vectors, we have cloned and expressed a humanized (Hu) version of the mouse anti-V5 tag antibody (clone SV5-Pk1).
View Article and Find Full Text PDFViruses
November 2024
State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China.
Kaposi's sarcoma-associated herpesvirus (KSHV), a γ-herpesvirus, is predominantly associated with Kaposi's sarcoma (KS) as well as two lymphoproliferative disorders: primary effusion lymphoma (PEL) and multicentric Castleman disease (MCD). Like other herpesviruses, KSHV employs two distinct life cycles: latency and lytic replication. To establish a lifelong persistent infection, KSHV has evolved various strategies to manipulate the epigenetic machinery of the host.
View Article and Find Full Text PDFViruses
November 2024
Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA.
Recently, using a panel of recombinant CHO cell lines, we identified the coxsackie and adenovirus receptor (CAR) and histo-blood group antigens (HBGAs) or sialic acid as the minimum requirement for susceptibility to rhesus enteric calicivirus (ReCV) infections. While ReCVs cause lytic infection in LLC-MK2 cells, recombinant CHO (rCHO) cell lines did not exhibit any morphological changes upon infection. To monitor infectious virus production, rCHO cell cultures had to be freeze-thawed and titrated on LLC-MK2 monolayers.
View Article and Find Full Text PDFJ Med Virol
January 2025
Microbiology Department, University of Massachusetts, Amherst, Massachusetts, USA.
Kaposi's sarcoma-associated herpesvirus is an oncogenic gammaherpesvirus that plays a major role in several human malignancies, including Kaposi's sarcoma, primary effusion lymphoma, and multicentric Castleman's disease. The complexity of KSHV biology is reflected in the sophisticated regulation of its biphasic life cycle, consisting of a quiescent latent phase and virion-producing lytic replication. KSHV expresses coding and noncoding RNAs, including microRNAs and long noncoding RNAs, which play crucial roles in modulating viral gene expression, immune evasion, and intercellular communication.
View Article and Find Full Text PDFbioRxiv
December 2024
Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary.
Caviid gammaherpesvirus 1 (CaGHV-1), formerly known as the guinea pig herpes-like virus, is an oncogenic gammaherpesvirus with a sequenced genome but an as-yet uncharacterized transcriptome. Using nanopore long-read RNA sequencing, we annotated the CaGHV-1 genome and constructed a detailed transcriptomic atlas. Our findings reveal diverse viral mRNAs and non-coding RNAs, along with mapped promoter elements for each viral gene.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!