Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Model-based compartmental analysis of data on plasma retinol kinetics after administration of labeled retinol provides unique information about whole-body vitamin A metabolism. If labeled β-carotene is coadministered, its bioefficacy relative to the retinol reference dose can also be estimated.
Objectives: The objectives were to model plasma retinol kinetics after administration of labeled preformed vitamin A and provitamin A β-carotene and to determine relative β-carotene bioefficacy.
Methods: We used the Simulation, Analysis and Modeling software (WinSAAM version 3.0.8; http://www.WinSAAM.org) to analyze previously collected data on plasma [C]- and [C]retinol kinetics for 14 d after oral administration of 1 mg [C]retinyl acetate and 2 mg [C]β-carotene in oil to 30 healthy young adults of European ancestry [13 men, 17 women; mean ± SD age: 24.5 ± 4.2 y; mean ± SD body weight: 65.2 ± 10 kg; mean ± SD body mass index (in kg/m): 22.5 ± 1.9] with moderate vitamin A intakes.
Results: A 6-component model provided the best fit to the data, including compartments for initial metabolism of vitamin A, plasma retinol, and extravascular vitamin A storage. The disposal rate was 6.7 ± 3.1 μmol/d, fractional catabolic rate was 6.0% ± 2.3%/d, and vitamin A stores were 123 ± 71 μmol. Relative β-carotene bioefficacy, based on the ratio of the areas under the fraction of dose curves calculated by WinSAAM, averaged 13.5% ± 6.02% (retinol activity equivalents = 7.7:1.0 μg). Interindividual variation in relative β-carotene bioefficacy was high (CV: 44%).
Conclusions: Vitamin A kinetics in these young adults were best described by essentially the same model that had been previously developed by using data for older adults with higher vitamin A stores; differences in parameter values reflected differences in vitamin A status. Estimated β-carotene bioefficacy was relatively low but similar to previously reported estimates obtained by graphical methods. This trial was registered at the UK Clinical Research Network as UKCRN 7413.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5037873 | PMC |
http://dx.doi.org/10.3945/jn.116.233486 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!