Following the performance of a superovulation protocol, multiple nodules were observed bilaterally in the uterine horns of 31 of 276 (11.2%) C57BL/6 J female mice aged 8.5 ± 0.6 (mean and standard error of mean) weeks. These lesions prevented embryo collection, and the uterine decidual reaction was suspected. Samples of pathological uteri (n = 20) and the normal genital tracts of donors treated with a similar superovulation protocol (control group, n = 10) were collected. Immunohistochemistry was performed to evaluate pancytokeratin, desmin, vimentin, progesterone receptor (PR), estrogen receptor α (ERα), Ki-67, cyclin D3 and c-Myc expression, as well as quantitative polymerase chain reaction to assess cyclin D3, Hoxa-10 and heparin-binding epidermal growth factor-like growth factor (HB-EGF) mRNA expression. The uterine decidual reaction presented a high degree of structural organization and specifically affected the antimesometrial region of the endometrium. The abnormal decidual cells were large polygonal cells that were frequently polyploid or binucleated and strongly positive for desmin. Immunohistochemistry showed higher Ki-67 proliferation index and higher expression of PR and cyclin D3 in decidual cells in the antimesometrial aspect of the endometrium, compared to nondecidualized endometrial stromal cells in the mesometrial aspect of affected uteri, and compared to endometrial stromal cells in healthy uteri. High expression of cyclin D3 and Hoxa-10 mRNA was also observed in uteri affected by the decidual reaction. These results suggest that PR overexpression in endometrial stromal cells, likely due to high progesterone levels, triggers cyclin D3 and Hoxa-10 overexpression, which may be involved in the pathological mechanisms of the mouse uterine decidual reaction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/0300985816660748 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!