Ventral Midline Thalamus Is Critical for Hippocampal-Prefrontal Synchrony and Spatial Working Memory.

J Neurosci

Department of Psychological and Brain Sciences, University of Delaware, Newark, Delaware 19716, and

Published: August 2016

Unlabelled: Maintaining behaviorally relevant information in spatial working memory (SWM) requires functional synchrony between the dorsal hippocampus and medial prefrontal cortex (mPFC). However, the mechanism that regulates synchrony between these structures remains unknown. Here, we used a unique dual-task approach to compare hippocampal-prefrontal synchrony while rats switched between an SWM-dependent task and an SWM-independent task within a single behavioral session. We show that task-specific representations in mPFC neuronal populations are accompanied by SWM-specific oscillatory synchrony and directionality between the dorsal hippocampus and mPFC. We then demonstrate that transient inactivation of the reuniens and rhomboid (Re/Rh) nuclei of the ventral midline thalamus abolished only the SWM-specific activity patterns that were seen during dual-task sessions within the hippocampal-prefrontal circuit. These findings demonstrate that Re/Rh facilitate bidirectional communication between the dorsal hippocampus and mPFC during SWM, providing evidence for a causal role of Re/Rh in regulating hippocampal-prefrontal synchrony and SWM-directed behavior.

Significance Statement: Hippocampal-prefrontal synchrony has long been thought to be critical for spatial working memory (SWM) and the ventral midline thalamic reuniens and rhomboid nuclei (Re/Rh) have long been considered a potential site for synchronizing the hippocampus and medial prefrontal cortex. However, the hypothesis that Re/Rh are critical for hippocampal-prefrontal synchrony and SWM has not been tested. We first used a dual-task approach to identify SWM-specific patterns of hippocampal-prefrontal synchrony. We then demonstrated that Re/Rh inactivation concurrently disrupted SWM-specific behavior and the SWM-specific patterns of hippocampal-prefrontal synchrony seen during dual-task performance. These results provide the first direct evidence that Re/Rh contribute to SWM by modulating hippocampal-prefrontal synchrony.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4978800PMC
http://dx.doi.org/10.1523/JNEUROSCI.0991-16.2016DOI Listing

Publication Analysis

Top Keywords

hippocampal-prefrontal synchrony
32
ventral midline
12
spatial working
12
working memory
12
dorsal hippocampus
12
synchrony
11
hippocampal-prefrontal
9
midline thalamus
8
critical hippocampal-prefrontal
8
memory swm
8

Similar Publications

Aims: Alzheimer's disease is characterized by memory loss and pathological changes in the brain, such as amyloid beta and tau pathology, disruptions in neural circuits and neuronal oscillations are also significant indicators of this disease and potential therapeutic targets. We studied how intranasal insulin impacts memory and neural oscillations in an Alzheimer's disease rat model induced by STZ.

Main Methods: Male Wistar rats were intracerebroventricularly injected with STZ, followed by intranasal insulin therapy.

View Article and Find Full Text PDF

The medial prefrontal cortex (mPFC) is a major contributor to relapse to cocaine in humans and to reinstatement in rodent models of cocaine use disorder. The output from the mPFC is potently modulated by parvalbumin (PV)-containing fast-spiking interneurons, the majority of which are surrounded by perineuronal nets. We previously showed that treatment with chondroitinase ABC (ABC) reduced the consolidation and reconsolidation of a cocaine conditioned place preference memory.

View Article and Find Full Text PDF

Hippocampal-prefrontal high-gamma flow during performance of a spatial working memory.

Brain Res Bull

February 2024

School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin 300070, China. Electronic address:

Working memory refers to a system that provides temporary storage and manipulation of the information necessary for complex cognitive tasks. The prefrontal cortex (PFC) and hippocampus (HPC) are major structures contributing to working memory. Accumulating evidence suggests that the HPC-PFC interactions are critical for the successful execution of working memory tasks.

View Article and Find Full Text PDF

Contextual fear conditioning (CFC) is mediated by a neural circuit that includes the hippocampus, prefrontal cortex, and amygdala, but the neurophysiological mechanisms underlying the regulation of CFC by neuromodulators remain unclear. Dopamine D1-like receptors (D1Rs) in this circuit regulate CFC and local synaptic plasticity, which is facilitated by synchronized oscillations between these areas. In rats, we determined the effects of systemic D1R blockade on CFC and oscillatory synchrony between dorsal hippocampus (DH), prelimbic (PL) cortex, basolateral amygdala (BLA), and ventral hippocampus (VH), which sends hippocampal projections to PL and BLA.

View Article and Find Full Text PDF

Memory consolidation during sleep is thought to depend on the coordinated interplay between cortical slow waves, thalamocortical sleep spindles and hippocampal ripples, but direct evidence is lacking. Here, we implemented real-time closed-loop deep brain stimulation in human prefrontal cortex during sleep and tested its effects on sleep electrophysiology and on overnight consolidation of declarative memory. Synchronizing the stimulation to the active phases of endogenous slow waves in the medial temporal lobe (MTL) enhanced sleep spindles, boosted locking of brain-wide neural spiking activity to MTL slow waves, and improved coupling between MTL ripples and thalamocortical oscillations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!