Unlabelled: Robot therapy promotes functional recovery after spinal cord injury (SCI) in animal and clinical studies. Trunk actions are important in adult rats spinalized as neonates (NTX rats) that walk autonomously. Quadrupedal robot rehabilitation was tested using an implanted orthosis at the pelvis. Trunk cortical reorganization follows such rehabilitation. Here, we test the functional outcomes of such training. Robot impedance control at the pelvis allowed hindlimb, trunk, and forelimb mechanical interactions. Rats gradually increased weight support. Rats showed significant improvement in hindlimb stepping ability, quadrupedal weight support, and all measures examined. Function in NTX rats both before and after training showed bimodal distributions, with "poor" and "high weight support" groupings. A total of 35% of rats initially classified as "poor" were able to increase their weight-supported step measures to a level considered "high weight support" after robot training, thus moving between weight support groups. Recovered function in these rats persisted on treadmill with the robot both actuated and nonactuated, but returned to pretraining levels if they were completely disconnected from the robot. Locomotor recovery in robot rehabilitation of NTX rats thus likely included context dependence and/or incorporation of models of robot mechanics that became essential parts of their learned strategy. Such learned dependence is likely a hurdle to autonomy to be overcome for many robot locomotor therapies. Notwithstanding these limitations, trunk-based quadrupedal robot rehabilitation helped the rats to visit mechanical states they would never have achieved alone, to learn novel coordinations, and to achieve major improvements in locomotor function.

Significance Statement: Neonatal spinal transected rats without any weight support can be taught weight support as adults by using robot rehabilitation at trunk. No adult control rats with neonatal spinal transections spontaneously achieve similar changes. The robot rehabilitation system can be inactivated and the skills that were learned persist. Responding rats cannot be detached from the robot altogether, a dependence develops in the skill learned. From data and analysis here, the likelihood of such rats to respond to the robot therapy can also now be predicted. These results are all novel. Understanding trunk roles in voluntary and spinal reflex integration after spinal cord injury and in recovery of function are broadly significant for basic and clinical understanding of motor function.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4978799PMC
http://dx.doi.org/10.1523/JNEUROSCI.2435-14.2016DOI Listing

Publication Analysis

Top Keywords

robot rehabilitation
20
weight support
20
rats
14
robot
14
ntx rats
12
adult rats
8
rats spinalized
8
spinalized neonates
8
robot therapy
8
spinal cord
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!