AI Article Synopsis

  • * A newly proposed strategy focuses on creating porous, low-density Ni-Co alloys, specifically Ni1Co2, which demonstrate excellent performance in oxygen evolution with low overpotential and high stability, comparable to conventional catalysts like IrO2.
  • * Incorporating graphene into the synthesis of these catalysts results in a material (Ni-NG) with exceptional hydrogen evolution activity, leading to a water electrolysis cell that shows high stability and current density, paving the way for innovative, lightweight energy solutions.

Article Abstract

Synthesis of low cost, durable and efficient electrocatalysts that support oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) are the bottlenecks in water electrolysis. Here we propose a strategy for the development of controllably alloyed, porous, and low density nickel (Ni) and cobalt (Co) based alloys - whose electrocatalytic properties can be tuned to make them multifunctional. Ni and Co based alloy with the chemical structure of Ni1Co2 is identified as an efficient OER catalyst among other stoichiometric structures in terms of over potential @ 10 mAcm(-2) (1.629 V), stability, low tafel slope (87.3 mV/dec), and high Faradaic efficiency (92%), and its OER performance is also found to be on par with the benchmarked IrO2. Tunability in the porous metal synthesis strategy allowed the incorporation of graphene during the Ni sponge formation, and the Ni- incorporated nitrogen doped graphene sponge (Ni-NG) is found to have very high HER activity. A water electrolysis cell fabricated and demonstrated with these freestanding electrodes is found to have high stability (>10 hours) and large current density (10 mAcm(-2) @ 1.6 V), opening new avenues in the design and development of cost effective and light weight energy devices.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4980622PMC
http://dx.doi.org/10.1038/srep31202DOI Listing

Publication Analysis

Top Keywords

controllably alloyed
8
low density
8
evolution reaction
8
water electrolysis
8
graphene sponge
8
low
4
alloyed low
4
density free-standing
4
free-standing ni-co
4
ni-co ni-graphene
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!