High grade gliomas (HGGs) are the most frequent and highly invasive type of brain tumors, which arise from glial cells. Among HGGs, glioblastoma multiforme (GBM) is the commonest and deadliest tumor type. Standard HGG therapy that involves tumor resection followed by concomitant treatment with radiation exposure and temozolomide (TMZ) cannot prevent recurrent tumor. The median survival of treated patients after surgery does not exceed 1.5 years. Vaccination with autologous dendritic cells (DCs) pulsed with tumor-specific peptides, antigens, or lysates is considered as a promising option to induce a potent anti-tumor immune response and cytotoxicity against GBM cells. However, since the tumor microenvironment is highly immunosuppressive and immunotolerant, specialized approaches should be applied to protect DC transplants against tumor-induced functional impairment and inhibition. So far, many phase I-III clinical trials utilizing DC vaccines for HGG treatment were completed or are underway. In summary, DC vaccination was safe and well tolerated by patients. DC-induced anti-tumor immune responses correlated with prolonged overall and progression- free survival. Combination of DC therapy with other interventional strategies (i.e., radiotherapy, chemotherapy, antibodies, etc.) and multimodal approaches should improve HGG treatment outcomes. In this review, we consider strategies that provide an option to override the immune inhibitory tumor microenvironment and boost DC vaccine-based antitumor immune response.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/1381612822666160719110618 | DOI Listing |
Nano Lett
January 2025
CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China.
Precise imaging of noncoding RNAs (ncRNAs) in specific organelles allows decoding of their functions at subcellular level but lacks advanced tools. Here we present a DNA-based nanobiotechnology for spatially selective imaging of ncRNA (e.g.
View Article and Find Full Text PDFInt J Surg
January 2025
Carcinoma Department of Traditional Chinese Medicine, Dianjiang People's Hospital of Chongqing, Chongqing, PR China.
The widespread adoption of high-resolution computed tomography (CT) screening has led to increased detection of small pulmonary nodules, necessitating accurate localization techniques for surgical resection. This review examines the evolution, efficacy, and safety of various localization methods for small pulmonary nodules. Studies focusing on localization techniques for pulmonary nodules ≤30 mm in diameter were included, with emphasis on technical success rates and complication profiles.
View Article and Find Full Text PDFEnzymatic asymmetric synthesis of l-phenylglycine by amino acid dehydrogenases has potential for industrial applications; however, this is hindered by their low catalytic efficiency toward high-concentration substrates. We identified and characterized a novel leucine dehydrogenase (LeuDH) with a high catalytic efficiency for benzoylformic acid via directed metagenomic approaches. Further, we obtained a triple-point mutant LeuDH-EER (D332E/G333E/L334R) with improved stability and catalytic efficiency through the rational design of distal loop 13.
View Article and Find Full Text PDFACS Sens
January 2025
Department of Engineering Physics, McMaster University, 1280 Main Street West, L8S 4L8 Hamilton, Ontario, Canada.
Current approaches for classifying biosensor data in diagnostics rely on fixed decision thresholds based on receiver operating characteristic (ROC) curves, which can be limited in accuracy for complex and variable signals. To address these limitations, we developed a framework that facilitates the application of machine learning (ML) to diagnostic data for the binary classification of clinical samples, when using real-time electrochemical measurements. The framework was applied to a real-time multimeric aptamer assay (RT-MAp) that captures single-frequency (12.
View Article and Find Full Text PDFHormones (Athens)
January 2025
LABIOEX-Exercise Biology Lab, Department of Health Sciences, UFSC-Federal University of Santa Catarina, Araranguá, SC, Brazil.
The endocannabinoid system (ECS), regulating such processes as energy homeostasis, inflammation, and muscle function, centers around cannabinoid receptors, including CB1. These receptors are mainly located in the central nervous system and skeletal muscles. Hyperactivity of CB1 receptors is linked to metabolic disorders and chronic inflammation, highlighting their potential as therapeutic targets for muscle hypertrophy and metabolic health.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!