Background: In recent years, there has been considerable research on recycling of agroindustrial waste for production of bioactive compounds. The food processing industry produces large amounts of citrus peels that may be an inexpensive source of useful agents.

Objective: The present work aimed to explore the phytochemical content, antioxidant, anticancer, antiproliferation, and antigenotxic activities of lemon, grapefruit, and mandarin peels.

Materials And Methods: Peels were extracted using 98% ethanol and the three crude extracts were assessed for their total polyphenol content (TPC), total flavonoid content (TFC), and antioxidant activity using DPPH (1, 1diphenyl2picrylhydrazyl). Their cytotoxic and mitogenic proliferation activities were also studied in human leukemia HL60 cells and mouse splenocytes by CCK8 assay. In addition, genotoxic/ antigenotoxic activity was explored in mouse splenocytes using chromosomal aberrations (CAs) assay.

Results: Lemon peels had the highest of TPC followed by grapefruit and mandarin. In contrast, mandarin peels contained the highest of TFC followed by lemon and grapefruit peels. Among the extracts, lemon peel possessed the strongest antioxidant activity as indicated by the highest DPPH radical scavenging, the lowest effective concentration 50% (EC50= 42.97 ?g extract/ mL), and the highest Trolox equivalent antioxidant capacity (TEAC=0.157). Mandarin peel exhibited moderate cytotoxic activity (IC50 = 77.8 ?g/mL) against HL60 cells, whereas grapefruit and lemon peels were ineffective antileukemia. Further, citrus peels possessed immunostimulation activity via augmentation of proliferation of mouse splenocytes (Tlymphocytes). Citrus extracts exerted noncytotoxic, and antigenotoxic activities through remarkable reduction of CAs induced by cisplatin in mouse splenocytes for 24 h.

Conclusions: The phytochemical constituents of the citrus peels may exert biological activities including anticancer, immunostimulation and antigenotoxic potential.

Download full-text PDF

Source

Publication Analysis

Top Keywords

citrus peels
16
mouse splenocytes
16
lemon grapefruit
12
grapefruit mandarin
12
peels
9
phytochemical content
8
content antioxidant
8
antioxidant anticancer
8
antigenotoxic activities
8
activities lemon
8

Similar Publications

Citrus fruits are widely distributed in East Asia, and tea made from citrus peels has demonstrated health benefits, such as a reduction in fever, inflammation, and high blood pressure. However, citrus leaves have not been evaluated extensively for their possible health benefits. In this study, the α-glucosidase-inhibitory activity of Jeju citrus hot-water (CW) and ethyl alcohol (CE) extracts, along with hesperidin (HP) (a bioactive compound in citrus leaf extracts), was investigated, and furthermore, their effect on postprandial blood glucose reduction in an animal model was determined.

View Article and Find Full Text PDF

Advance glycation end products (AGEs) are the main reason for diabetic complications. Persistent hyperglycemia and non-enzymatic glycation increase the rate of AGEs formation. Natural functional food-based approaches are mainly under investigation these days to discover new treatment options.

View Article and Find Full Text PDF

peels are rich in bioactive phenolic compounds with various health effects including antioxidant, antiobesity, antiinflammatory, antihypertensive, antihypercholesterolemic, antimicrobial, antidiabetic, and anticarcinogenic activities. Both extractable and nonextractable phenolics are present in significant amounts in peel with diverse bioactivities. While extractable phenolics can be recovered from the fruit peels by conventional extraction methods, nonextractable phenolics remaining in the residues must be released from the cell matrix first by hydrolysis with acid, alkali, or enzymes.

View Article and Find Full Text PDF

Characterization and catalytic activity of Co/Mo-modified activated carbons derived from orange peels in limonene oxidation.

Environ Sci Pollut Res Int

January 2025

Department of Catalytic and Sorbent Materials Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 42, 71-065, Szczecin, Poland.

Article Synopsis
  • The study explored the use of orange peels to create porous activated carbons through chemical activation, which were then tested as metal catalyst supports for limonene oxidation.
  • Characterization of the materials included analytic techniques such as N2 sorption, XRD, FTIR, SEM, XPS, and XRF to evaluate their properties and elemental composition.
  • Results indicated that modifying activated carbon with cobalt and molybdenum significantly enhanced catalytic activity, with the molybdenum-based catalyst achieving a selectivity of 37% for limonene oxide at a conversion rate of 58%.
View Article and Find Full Text PDF

Background: The main obstacle facing the utilization of microbial enzymes in industrial applications is the high cost of production substrates. As a result of the mentioned different wastes (coffee powder waste, dates nawah powder, molokhia stems, pea peels, lemon peels, and corn cobs) were investigated as low-cost nutritional substrates for the production of microbial β-galactosidase in this study. The purification of the enzyme and its kinetic and thermodynamics were investigated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!