We present a modeling approach to determine the permeability-selectivity tradeoff for microfiltration and ultrafiltration membranes with a distribution of pore sizes and pore shapes. Using the formulated permeability-selectivity model, the effect of pore aspect ratio and pore size distribution on the permeability-selectivity tradeoff of the membrane is analyzed. A finite element model is developed to study the effect of membrane stretching on the distribution of pore sizes and shapes in the stretched membrane. The effect of membrane stretching on the permeability-selectivity tradeoff of membranes is also analyzed. The results show that increasing pore aspect ratio improves membrane performance while increasing the width of pore size distribution deteriorates the performance. It was also found that the effect of membrane stretching on the permeability-selectivity tradeoff is greatly affected by the uniformity of pore distribution in the membrane. Stretching showed a positive shift in the permeability-selectivity tradeoff curve of membranes with well-dispersed pores while in the case of pore clustering, a negative shift in the permeability-selectivity tradeoff curve was observed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5041031 | PMC |
http://dx.doi.org/10.3390/membranes6030040 | DOI Listing |
Nat Commun
January 2025
State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, China.
High-performance gas separation membranes have potential in industrial separation applications, while overcoming the permeability-selectivity trade-off via regulable aperture distribution remains challenging. Here, we report a strategy to fabricate Polyolefin Reweaved Ultra-micropore Membrane (PRUM) to acquire regulable microporous channel. Specifically, olefin monomers are dispersed uniformly into a pristine membrane (e.
View Article and Find Full Text PDFACS Nano
December 2024
McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States.
The applications of polymeric membranes have grown rapidly compared to traditional separation technologies due to their energy efficiency and smaller footprint. However, their potential is not fully realized due, in part, to their heterogeneity, which results in a "permeability-selectivity" trade-off for most membrane applications. Inspired by the intricate architecture and excellent homogeneity of biological membranes, bioinspired and biomimetic membranes (BBMs) aim to emulate biological membranes for practical applications.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2024
Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139.
Mobula rays have evolved leaf-shaped filter structures to separate food particles from seawater, which function similarly to industrial cross-flow filters. Unlike cross-flow filtration, where permeability and selectivity are rationally designed following trade-off analyses, the driving forces underlying the evolution of mobula filter geometry have remained elusive. To bridge the principles of cross-flow and mobula filtration, we establish a universal framework for the permeability-selectivity trade-off in a leaky channel inspired by mobula filters, where permeability and selectivity are characterized by the pore-scale leaking rate and the cut-off particle size, respectively.
View Article and Find Full Text PDFPolymers (Basel)
October 2024
Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.
Thin-film composite (TFC) membranes containing various fillers and additives present an effective alternative to conventional dense polymer membranes, which often suffer from low permeance (flux) and the permeability-selectivity tradeoff. Alongside the development and utilization of numerous new polymers over the past few decades, diverse additives such as metal-organic frameworks (MOFs), graphene oxides (GOs), and ionic liquids (ILs) have been integrated into the polymer matrix to enhance performance. However, achieving desirable interfacial compatibility between these additives and the host polymer matrix, particularly in TFC structures, remains a significant challenge.
View Article and Find Full Text PDFACS Appl Mater Interfaces
October 2024
Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States.
Multifunctional, nanostructured membranes hold immense promise for overcoming permeability-selectivity trade-offs and enhancing membrane durability in challenging molecule separations. Following the fabrication of copolymer membranes, additive manufacturing technologies can introduce reactive inks onto substrates to modify pore wall chemistries. However, large-scale implementation is hindered by a lack of systematic optimization.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!