Decarboxylative Annulation of α-Amino Acids with γ-Nitroaldehydes.

Org Lett

Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States.

Published: September 2016

Indolizidine and quinolizidine derivatives are readily assembled from proline or pipecolic acid and γ-nitroaldehydes by means of a decarboxylative annulation process. These reactions are promoted by simple acetic acid and involve azomethine ylides as reactive intermediates. The method was applied to the synthesis of an epiquinamide analog.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5013532PMC
http://dx.doi.org/10.1021/acs.orglett.6b02020DOI Listing

Publication Analysis

Top Keywords

decarboxylative annulation
8
annulation α-amino
4
α-amino acids
4
acids γ-nitroaldehydes
4
γ-nitroaldehydes indolizidine
4
indolizidine quinolizidine
4
quinolizidine derivatives
4
derivatives assembled
4
assembled proline
4
proline pipecolic
4

Similar Publications

Herein, we reported a sustainable and simple method involving electrochemical-catalyzed decarboxylative annulation and hydroaminomethylation of cyclic aldimines with -arylglycines by switching the reaction solvents. When the reaction was carried out in MeCN/HO or HO, the resulting products included imidazolidine-fused sulfamidates and C4-aminomethylated cyclic aldimines, obtained in moderate to good yields, respectively. Mechanistically, a radical pathway was proposed to be involved in this approach.

View Article and Find Full Text PDF

Visible-light-induced decarboxylative cyclization.

Org Biomol Chem

December 2024

Department of Chemistry, Rishi Bankim Chandra College for Women, Naihati, 24-Parganas (N), Pin-743165, India.

The application of visible light as an energy source provides a new avenue in organic transformation due to its mildness, efficiency and selectivity. In fact, recent years have witnessed remarkable advances in photoinduced decarboxylative coupling reactions involving carboxylic acids and their derivatives. Under appropriate photoredox conditions they undergo single electron transfer (SET), resulting in reactive radicals which can assemble with suitable reaction partners.

View Article and Find Full Text PDF

The first Ni-catalyzed asymmetric decarboxylative strategy for the construction of carbocycles with contiguous quaternary all-carbon stereocenters is reported. The key to the success of these reactions is the utilization of rationally designed allenylic methylene cyclic carbonates as substrates with Ni catalysis. The floppy allenylic group exerts unique electronic properties on the carbonate, which allows further asymmetric nucleophilic annulations with alkenes.

View Article and Find Full Text PDF

A Ru(II)-catalyzed migratory insertion of carbene into C-H bonds of 4-aryl-pyrrolo[2,3-]pyrimidines has been developed. This transformation endows the facile fabrication of C-C bonds with high atom economy, good regioselectivity, and wide functional group tolerance, exploiting the directing properties of pyrimidinic nitrogen. In addition, the planar polycyclic pyrrolo-pyrimido-isoindole framework has been accomplished from a cascade reaction of bromination, cyclization, and decarboxylation of synthesized products.

View Article and Find Full Text PDF

Here we report the development of unprecedented silver-catalyzed intramolecular annulations of -acrolyl-2-(3-indolyl) benzimidazoles with alkyl carboxylic acids to construct complex fused-pentacyclic alkaloid scaffolds. Divergent reactivities are noticed with altered groups at C2-indole of the substrate. The reaction proceeds through decarboxylative alkylation, followed by dearomative annulation in a domino manner with excellent diastereoselectivity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!