The light-sensing outer segments of photoreceptor cells harbor hundreds of flattened membranous discs containing the visual pigment, rhodopsin, and all the proteins necessary for visual signal transduction. PRCD (progressive rod-cone degeneration) protein is one of a few proteins residing specifically in photoreceptor discs, and the only one with completely unknown function. The importance of PRCD is highlighted by its mutations that cause photoreceptor degeneration and blindness in canine and human patients. Here we report that PRCD is S-acylated at its N-terminal cysteine and anchored to the cytosolic surface of disc membranes. We also showed that mutating the S-acylated cysteine to tyrosine, a common cause of blindness in dogs and a mutation found in affected human families, causes PRCD to be completely mislocalized from the photoreceptor outer segment. We next undertook a proteomic search for PRCD-interacting partners in disc membranes and found that it binds rhodopsin. This interaction was confirmed by reciprocal precipitation and co-chromatography experiments. We further demonstrated this interaction to be critically important for supporting the intracellular stability of PRCD, as the knockout of rhodopsin caused a drastic reduction in the photoreceptor content of PRCD. These data reveal the cause of photoreceptor disease in PRCD mutant dogs and implicate rhodopsin to be involved in PRCD's unknown yet essential function in photoreceptors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5513659 | PMC |
http://dx.doi.org/10.1021/acs.biochem.6b00489 | DOI Listing |
Exp Eye Res
January 2025
Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India. Electronic address:
Autophagy is common in the aging retinal pigment epithelium (RPE). A dysfunctional autophagy in aged RPE is implicated in the pathogenesis of age-related macular degeneration. Aging human retina accompanies degenerative changes in photoreceptor mitochondria.
View Article and Find Full Text PDFCells
January 2025
Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106, USA.
Retinitis pigmentosa (RP) is a hereditary disease characterized by progressive vision loss ultimately leading to blindness. This condition is initiated by mutations in genes expressed in retinal cells, resulting in the degeneration of rod photoreceptors, which is subsequently followed by the loss of cone photoreceptors. Mutations in various genes expressed in the retina are associated with RP.
View Article and Find Full Text PDFEye (Lond)
January 2025
Division of Experimental Retinal Therapies, Department of Clinical Sciences, University of Pennsylvania, School of Veterinary Medicine, Philadelphia, PA, 19104, USA.
In this review, we summarize the findings of several pre-clinical studies in the canine BEST1 disease model. To this end, client-owned and purpose bred dogs that were compound heterozygotes or homozygotes, respectively, for two or one of 3 different mutations in BEST1 were evaluated by ophthalmic examination, cSLO/sdOCT imaging, and retinal immunohistochemistry to characterize the clinical and microanatomic features of the disease. Subsequently AAV-mediated gene therapy was done to transfer the BEST1 transgene to the RPE under control of a hVMD2 promoter.
View Article and Find Full Text PDFOphthalmic Genet
January 2025
Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, USA.
Introduction: Phosphoribosyl pyrophosphate synthetase 1 () is an X-linked gene critical for nucleotide metabolism. Pathogenic variants cause three overlapping phenotypes: Arts syndrome (severe neurological disease), Charcot-Marie-Tooth type 5 [CMTX5] (peripheral neuropathy), and non-syndromic sensorineural hearing loss (SNHL). Each may be associated with retinal dystrophy.
View Article and Find Full Text PDFStem Cell Res
February 2025
Ophthalmology Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain. Electronic address:
Retinitis Pigmentosa type 25 (RP25) is a form of inherited retinal dystrophy characterized by a progressive loss of rod photoreceptors, subsequent degeneration of cone photoreceptors, and eventually, the retinal pigment epithelium. Caused by mutations in the EYS gene, it is believed to be critical for the structural and functional integrity of the retina. Using a non-integrative RNA reprogramming method, we have generated human induced pluripotent stem cell (hiPSC) lines from RP25 patient and from carriers but asymptomatic daughters.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!