A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Malaria Incidence Rates from Time Series of 2-Wave Panel Surveys. | LitMetric

Malaria Incidence Rates from Time Series of 2-Wave Panel Surveys.

PLoS Comput Biol

Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America.

Published: August 2016

Methodology to estimate malaria incidence rates from a commonly occurring form of interval-censored longitudinal parasitological data-specifically, 2-wave panel data-was first proposed 40 years ago based on the theory of continuous-time homogeneous Markov Chains. Assumptions of the methodology were suitable for settings with high malaria transmission in the absence of control measures, but are violated in areas experiencing fast decline or that have achieved very low transmission. No further developments that can accommodate such violations have been put forth since then. We extend previous work and propose a new methodology to estimate malaria incidence rates from 2-wave panel data, utilizing the class of 2-component mixtures of continuous-time Markov chains, representing two sub-populations with distinct behavior/attitude towards malaria prevention and treatment. Model identification, or even partial identification, requires context-specific a priori constraints on parameters. The method can be applied to scenarios of any transmission intensity. We provide an application utilizing data from Dar es Salaam, an area that experienced steady decline in malaria over almost five years after a larviciding intervention. We conducted sensitivity analysis to account for possible sampling variation in input data and model assumptions/parameters, and we considered differences in estimates due to submicroscopic infections. Results showed that, assuming defensible a priori constraints on model parameters, most of the uncertainty in the estimated incidence rates was due to sampling variation, not to partial identifiability of the mixture model for the case at hand. Differences between microscopy- and PCR-based rates depend on the transmission intensity. Leveraging on a method to estimate incidence rates from 2-wave panel data under any transmission intensity, and from the increasing availability of such data, there is an opportunity to foster further methodological developments, particularly focused on partial identifiability and the diversity of a priori parameter constraints associated with different human-ecosystem interfaces. As a consequence there can be more nuanced planning and evaluation of malaria control programs than heretofore.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4980052PMC
http://dx.doi.org/10.1371/journal.pcbi.1005065DOI Listing

Publication Analysis

Top Keywords

incidence rates
20
2-wave panel
16
malaria incidence
12
transmission intensity
12
methodology estimate
8
estimate malaria
8
markov chains
8
rates 2-wave
8
panel data
8
priori constraints
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!