Temperature-dependent (2)H longitudinal spin relaxation times (T1) of dilute benzene-d6 in 1-butyl-3-methylimidazolium tetrafluoroborate ([Im41][BF4]) and two deuterated variants of the 1-ethyl-3-methylimidazolium cation (Im21(+)-d1 and Im21(+)-d6) in 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([Im21][Tf2N]), measured at multiple Larmor frequencies, were used to probe rotational dynamics in ionic liquids. Rotational correlation times significantly faster than predicted by slip hydrodynamic calculations were observed for both solutes. Molecular dynamics simulations of these systems enabled extraction of more information about the rotational dynamics from the NMR data than rotation times alone. The multifrequency (2)H T1(T) data could be fit to within uncertainties over a broad region about the T1 minimum using models of the relevant rotational time correlation functions and their viscosity/temperature dependence derived from simulation. Such simulation-guided fitting provided confidence in the semiquantitative accuracy of the simulation models and enabled interpretation of NMR measurements to higher viscosities than previously possible. Simulations of the benzene system were therefore used to explore the nature of solute rotation in ionic liquids and how it might differ from rotation in conventional solvents. Whereas "spinning" about the C6 axis of benzene senses similarly weak solvent friction in both types of solvents, "tumbling" (rotations about in-plane axes) differs significantly in conventional solvents and ionic liquids. In the sluggish environment provided by ionic liquids, orientational caging and the presence of rare but influential large-amplitude (180°) jumps about in-plane axes lead to rotations being markedly nondiffusive, especially below room temperature.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpcb.6b06715 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
Henan Normal University School of Chemistry and Chemical Engineering, Chemistry, CHINA.
ADP-ribosylation is a complex post-translational modification involved in key physiological processes and associated with various health and disease states. The growing interest in ADP-ribosylation necessitates straightforward and efficient synthetic methods for the preparation of ADP-ribosylated peptides/proteins. In this study, we report a facile reaction between nicotinamide adenine dinucleotide (NAD+) and alcohols promoted by a combination of ionic liquids, yielding up to 94% with α:β ratios ranging from 88:12 to 99:1 and a switchable configuration selectivity.
View Article and Find Full Text PDFLangmuir
January 2025
School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China.
Spin glass (SG), in which the spins are glassy, has attracted broad attention for theoretical study and prospective application. SG states are generally related to disordered or frustrated spin systems, which are usually observed in inorganic magnets. Herein, supramolecular magnetic ionic liquid (TMTBDI[FeCl]) self-assemblies are prepared by solution self-assembly via hydrophobic and π-π stacking interactions.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Physical Chemistry, University of Tabriz, Tabriz, Iran.
Chemosphere
December 2024
Department of Safety, Health and Environmental Engineering, Ming Chi University of Technology, New Taipei City 243303, Taiwan, ROC; Center for Sustainability and Energy Technologies, Chang Gung University, Taoyuan 33323, Taiwan, ROC; Biochemical Technology R&D Center, Ming Chi University of Technology, New Taipei City, 24301, Taiwan, ROC; Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Chiayi 61363, Taiwan, ROC. Electronic address:
Large amounts of wastewater are produced from semiconductor manufacturing, and the production energy consumption has skyrocketed with its global demand in recent years. Forward osmosis (FO) provides unique merits in reclaiming the wastewater if suitable draw solutes with high water flux, low leakage, and limited energy requirement in regeneration are available. Two lower critical solution temperature-ionic liquids (LCST-ILs), tetrabutylphosphonium trimethylbenzensulfonate ([P][TMBS]) and tetrabutylphosphonium maleate ([P][Mal]) were synthesized and systematically assessed as recycled draw solutes in FO for the water reclamation from the wastewater of Si-ingot sawing.
View Article and Find Full Text PDFOrg Biomol Chem
January 2025
State Key Laboratory Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Road South, Nanjing 211816, China.
The cycloaddition of CO to epoxide (CCE) reactions produce valuable cyclic carbonates useful in the electrolytes of lithium-ion batteries, as organic solvents, and in polymeric materials. However, halide-containing catalysts are predominantly used in these reactions, despite halides being notoriously corrosive to steel processing equipment and residual halides also having harmful effects. To eliminate the reliance on halides as cocatalyst in most CCE reactions, halide-free catalysts are highly desirable.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!