Objective: to compare the axillar temperatures of newborns that are put immediately after birth in skin-to-skin contact under the Top Maternal device, as compared to those in a radiant heat crib.
Methods: comparatives observational study of the case-control type about temperature of 60 babies born at the Obstetric Center and Normal Delivery Center of a public hospital of the municipality of Sao Paulo, being them: 29 receiving assistance in heated crib and 31 in skin-to skin contact, shielded by a cotton tissue placed on mother's thorax, called Top Maternal.
Results: the temperature of the babies of the skin-to-skin contact group presented higher values in a larger share of the time measures verified, as compared to those that were placed in radiant heat crib, independently from the place of birth. Differences between the two groups were not statistically significant.
Conclusion: the study contributes to generate new knowledge, supporting the idea of keeping babies with their mothers immediately after birth protected with the Maternal Top, without harming their wellbeing, as it keeps the axillar temperature in recommendable levels.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4990039 | PMC |
http://dx.doi.org/10.1590/1518-8345.0305.2741 | DOI Listing |
Surv Geophys
October 2024
European Space Agency (ESA-ESRIN), 00044 Frascati, Italy.
This study uses an oceanic energy budget to estimate the ocean heat transport convergence in the North Atlantic during 2005-2018. The horizontal convergence of the ocean heat transport is estimated using ocean heat content tendency primarily derived from satellite altimetry combined with space gravimetry. The net surface energy fluxes are inferred from mass-corrected divergence of atmospheric energy transport and tendency of the ECMWF ERA5 reanalysis combined with top-of-the-atmosphere radiative fluxes from the clouds and the Earth's radiant energy system project.
View Article and Find Full Text PDFPLoS One
December 2024
CIBIO, Research Centre in Biodiversity and Genetic Resources, InBIO, Universidade do Porto, Vila do Conde, Portugal.
Thermoregulating ectotherms may resort to different external heat sources to modulate their body temperature through an array of behavioural and physiological adaptations which modulate heat exchange with the environment and its distribution across the animal's body. Even small-bodied animals are capable of fine control over such rates and the subsequent re-allocation of heat across the body. Such thermal exchanges with the environment usually happen through two non-mutually exclusive modes: heliothermy (radiant heat gain from the sun) or thigmothermy (heat gained or lost via conduction).
View Article and Find Full Text PDFACS Omega
December 2024
Guangdong Provincial Key Laboratory of Distributed Energy System, Dongguan University of Technology, Dongguan 523820, China.
To comprehensively explore syngas cocombustion technology, gasification experiments in a bench-scale circulating fluidized bed (CFB) and three-dimensional (3D) numerical simulations of a coal-fired boiler furnace have been conducted. In the amplification experiment of biomass gasification, sawdust has been gasified using air, oxygen-enriched air, and steam. The highest heating value of the syngas products reaches 12.
View Article and Find Full Text PDFMaterials (Basel)
November 2024
Department of Sustainable Technologies, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamycka 129, Suchdol, 165 00 Prague, Czech Republic.
Firefighters need personal protection equipment and protective clothing to be safe and protected when responding to fire incidents. At present, firefighters' suits are developed by using inherently thermal-resistant fibers but pose serious problems related to comfort. In the present research, multilayered fire-fighting fabrics were developed with different fiber blends.
View Article and Find Full Text PDFSci Total Environ
December 2024
Future Cities Laboratory Global, Singapore-ETH Centre, Singapore; Singapore University of Technology and Design, Singapore. Electronic address:
In the face of global rising temperatures and excessive urban heat, developing effective heat mitigation strategies has become increasingly urgent. Street shade, a typical cooling shelter for urban dwellers, has been primarily investigated for outdoor thermal comfort but not extensively under extreme heat conditions. This study explores the cooling efficacy of diverse street shade types in mitigating urban heat, thereby facilitating cities and their residents' adaptation to climatic shifts.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!