A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Quantitative Localization Microscopy Reveals a Novel Organization of a High-Copy Number Plasmid. | LitMetric

Quantitative Localization Microscopy Reveals a Novel Organization of a High-Copy Number Plasmid.

Biophys J

Department of Physics, University of Toronto, Toronto, Ontario, Canada; Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, Canada. Electronic address:

Published: August 2016

The maintenance of high-copy number plasmids within bacteria had been commonly thought to result from free diffusion and random segregation. Recent microscopy experiments, however, observed high-copy number plasmids clustering into discrete foci, which seemed to contradict this model, and hinted at an undiscovered active mechanism, as often found in low-copy number plasmids. We recently investigated the cellular organization of a ColE1-derivative plasmid in Escherichia coli bacteria using quantitative superresolved microscopy based on single-molecule localization in combination with single-molecule fluorescence in situ hybridization (smFISH). We observed that many of the plasmids aggregated into large clusters, although most of the plasmids were randomly distributed throughout the bacteria, minus an excluded volume about the chromosomal DNA. Our results indicate that neither of the previous models completely encompasses the behavior of high-copy number plasmids. We also found many plasmids within the chromosomal volume, providing further evidence that the nucleoid does not fully exclude DNA and RNA.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4982941PMC
http://dx.doi.org/10.1016/j.bpj.2016.06.033DOI Listing

Publication Analysis

Top Keywords

high-copy number
16
number plasmids
16
plasmids
7
number
5
quantitative localization
4
localization microscopy
4
microscopy reveals
4
reveals novel
4
novel organization
4
high-copy
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!