Direct Photolysis Rates and Transformation Pathways of the Lampricides TFM and Niclosamide in Simulated Sunlight.

Environ Sci Technol

Environmental Chemistry and Technology Program, University of Wisconsin - Madison, Madison, Wisconsin 53706, United States.

Published: September 2016

The lampricides 3-trifluoromethyl-4-nitrophenol (TFM) and 2',5-dichloro-4'-nitrosalicylanilide (niclosamide) are directly added to many tributaries of the Great Lakes that harbor the invasive parasitic sea lamprey. Despite their long history of use, the fate of lampricides is not well understood. This study evaluates the rate and pathway of direct photodegradation of both lampricides under simulated sunlight. The estimated half-lives of TFM range from 16.6 ± 0.2 h (pH 9) to 32.9 ± 1.0 h (pH 6), while the half-lives of niclosamide range from 8.88 ± 0.52 days (pH 6) to 382 ± 83 days (pH 9) assuming continuous irradiation over a water depth of 55 cm. Both compounds degrade to form a series of aromatic intermediates, simple organic acids, ring cleavage products, and inorganic ions. Experimental data were used to construct a kinetic model which demonstrates that the aromatic products of TFM undergo rapid photolysis and emphasizes that niclosamide degradation is the rate-limiting step to dehalogenation and mineralization of the lampricide. This study demonstrates that TFM photodegradation is likely to occur on the time scale of lampricide applications (2-5 days), while niclosamide, the less selective lampricide, will undergo minimal direct photodegradation during its passage to the Great Lakes.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.6b02607DOI Listing

Publication Analysis

Top Keywords

simulated sunlight
8
great lakes
8
direct photodegradation
8
tfm
5
niclosamide
5
direct photolysis
4
photolysis rates
4
rates transformation
4
transformation pathways
4
lampricides
4

Similar Publications

The removal of antimony from wastewater using traditional methods such as adsorption and membrane filtration generates large amounts of antimony-containing hazardous wastes, posing significant environmental threats. This study proposed a new treatment strategy to reductively remove and recover antimony from wastewater using an advanced UV/sulfite reduction process in the form of valuable strategic metalloid antimony (Sb(0)), thus preventing hazardous waste generation. The results indicated that more than 99.

View Article and Find Full Text PDF

Efficient CO Electrocarboxylation Using Dye-Sensitized Photovoltaics.

Molecules

December 2024

School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China.

This paper presents the solar-driven electrocarboxylation of 2-bromopyridine (2-BP) with CO into high-value-added chemicals 2-picolinic acid (2-PA) using dye-sensitized photovoltaics under simulated sunlight. Using three series-connected photovoltaic modules and an Ag electrode with excellent catalytic performance, a Faraday efficiency () of 33.3% is obtained for 2-PA under mild conditions.

View Article and Find Full Text PDF

Hole-transport layers (HTL) in perovskite solar cells (PSCs) with an n-i-p structure are commonly doped by bis(trifluoromethane)sulfonimide (TFSI) salts to enhance hole conduction. While lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) dopant is a widely used and effective dopant, it has significant limitations, including the need for additional solvents and additives, environmental sensitivity, unintended oxidation, and dopant migration, which can lead to lower stability of PSCs. A novel ionic liquid, 1-(2-methoxyethyl)-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)amide (MMPyTFSI), is explored as an alternative dopant for 2,2',7,7'-tetrakis(N,N-di-p-methoxyphenylamino)-9,9'-spirobifluorene (spiro-OMeTAD).

View Article and Find Full Text PDF

Keratoconus is a burden to health systems and patients worldwide. Corneal collagen crosslinking (CXL) treatment has been shown abroad to be cost-effective for treating progressive keratoconus. However, no cost-effectiveness studies have been performed in Brazil.

View Article and Find Full Text PDF

Introduction: Medicine quality can be influenced by environmental factors. In low- and middle-income countries (LMICs) with tropical climates, storage facilities of medicines in healthcare settings and homes may be suboptimal. However, knowledge of the effects of temperature and other climatic and environmental factors on the quality of medicines is limited.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!