Water Sci Technol
Department of Environmental, Water and Earth Sciences, Tshwane University of Technology, Pretoria, South Africa E-mail:
Published: February 2017
The study investigates the influence of process parameters on the effectiveness of ozonation in the removal of organic micro-pollutants from wastewater. Primary and secondary municipal wastewater containing phenol was treated. The effect of operating parameters such as initial pH, ozone dosage, and initial contaminant concentration was studied. An increase in contaminant decomposition with pH (3-11) was observed. The contaminant removal efficiencies increased with an increase in ozone dose rate (5.5-36.17 mg L(-1) min(-1)). Furthermore, the ultraviolet absorbance (UV 254 nm) of the wastewater decreased during ozonation indicating the breakdown of complex organic compounds into low molecular weight organics. Along the reaction, the pH of wastewater decreased from 11 to around 8.5 due to the formation of intermediate acidic species. Moreover, the biodegradability of wastewaters, measured as biological and chemical oxygen demand (BOD5/COD), increased from 0.22 to 0.53. High ozone utilization efficiencies of up to 95% were attained thereby increasing the process efficiency; and they were dependent on the ozone dosage and pH of solution. Ozonation of secondary wastewater attained the South African water standards in terms of COD required for wastewater discharge and dissolved organic carbon in drinking water and increased significantly the biodegradability of primary wastewater.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2166/wst.2016.276 | DOI Listing |
Environ Monit Assess
January 2025
Institute of Environmental Engineering and Building Installations, Faculty of Environmental Engineering and Energy, Poznan University of Technology, Berdychowo 4, 60-965, Poznan, Poland.
Riverbank filtration (RBF) has emerged as a crucial and functional water treatment method, particularly effective in improving surface water quality. This review is aimed at assessing the suitability of RBF in regions with limited access to clean water, such as Africa, where it has the potential to alleviate water scarcity and enhance water security. This review used various studies, highlighting the principles, applications, and advancements of RBF worldwide.
View Article and Find Full Text PDFChem Sci
January 2025
Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University Changchun 130024 China
Conventional post-modification methods usually face the fundamental challenge of balancing the high content of functional groups and large surface area for porous organic polymers (POPs). The reason, presumably, stems from ineffective and insufficient swelling of the porous structure of POP materials, which is detrimental to mass transfer and modification of functional groups, especially with large-sized ones. It is important to note that significant differences exist in the porous structures of POP materials in a solvent-free state after thermal activation and solvent swelling state.
View Article and Find Full Text PDFBMC Microbiol
November 2024
Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El Buhouth St, Dokki, 12622, Giza, Egypt.
Background: Although there are many uses for metal-organic framework (MOF) based nanocomposites, research shows that these materials have received a lot of interest in the field of water treatment, namely in the photodegradation of water contaminants, and disinfection of some pathogenic bacteria and fungi. This is brought on by excessive water pollution, a lack of available water, low-quality drinking water, and the emergence of persistent micro-pollutants in water bodies. Photocatalytic methods may be used to remove most water contaminants, and pathogenic microbes, and MOF is an excellent modifying and supporting material for photocatalytic degradation.
View Article and Find Full Text PDFWater Res
January 2025
Analytical Chemistry Group, Department of Plant and Environmental Science, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg 1871, Denmark.
Wastewater treatment plants (WWTPs) often fail to fully remove organic micro-pollutants (OMPs), necessitating advanced treatment methods. This study examines the potential of an agricultural waste-derived adsorbent, rice husk (RH) - silica, for removing a complex mixture of 20 OMPs in MilliQ water and wastewater effluent. While RH-silica shows potential for OMP removal, its performance with multicomponent mixtures in real wastewater has yet to be investigated.
View Article and Find Full Text PDFJ Environ Manage
May 2024
Department of Chemistry, School of Physical Sciences, Mizoram University, Aizawl, 796004, India. Electronic address:
Due to the potential harm caused by emerging micro-pollutants to living organisms, contaminating water supplies by micro-pollutants like EDCs, pharmaceuticals, and microorganisms has become a concern in many countries. Considering both microbiological and micro-pollutant exposure risks associated with water use for agricultural/or household purposes, it is imperative to create a strategy for improving pollutant removal from treated wastewater that is both effective and affordable. Natural clay minerals efficiently remove contaminants from wastewater, though the pristine clay has less affinity to several organic pollutants.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!
© LitMetric 2025. All rights reserved.