AI Article Synopsis

Article Abstract

Functional recovery is often unsatisfactory after severe extended nerve defects or proximal nerve trunks injuries repaired by traditional repair methods, as the long regeneration distance for the regenerated axons to reinnervate their original target end-organs. The proximal nerve stump can regenerate with many collaterals that reinnervate the distal stump after peripheral nerve injury, it may be possible to use nearby fewer nerve fibers to repair more nerve fibers at the distal end to shorten the regenerating distance. In this study, the proximal peroneal nerve was used to repair both the distal peroneal and tibial nerve. The number and location of motor neurons in spinal cord as well as functional and morphological recovery were assessed at 2 months, 4 months and 8 months after nerve repair, respectively. Projections from the intact peroneal and tibial nerves were also studied in normal animals. The changes of motor neurons were assessed using the retrograde neurotracers FG and DiI to backlabel motor neurons that regenerate axons into two different pathways. To evaluate the functional recovery, the muscle forces and sciatic function index were examined. The muscles and myelinated axons were assessed using electrophysiology and histology. The results showed that all labeled motor neurons after nerve repair were always confined within the normal peroneal nerve pool and nearly all the distribution of motor neurons labeled via distal different nerves was disorganized as compared to normal group. However, there was a significant decline in the number of double labeled motor neurons and an obvious improvement with respect to the functional and morphological recovery between 2 and 8 months. In addition, the tibial/peroneal motor neuron number ratio at different times was 2.11±0.05, 2.13±0.08, 2.09±0.12, respectively, and was close to normal group (2.21±0.09). Quantitative analysis showed no significant morphological differences between myelinated nerve fibers regenerated along the two distal nerves except for the number of nerve fibers, which was higher in the tibial nerve. The ratio of distal regenerated axon numbers to proximal donor nerve axon numbers was about 3.95±0.10, 4.06±0.19 and 3.87±0.23, respectively. This study demonstrated that fewer nerve fibers can regenerate a large number of collaterals which successfully repopulate both distal nerves and lead to the partial recovery of lost functions. It may provide a new method to repair severe extended nerve defects or proximal nerve trunks injuries.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4969427PMC

Publication Analysis

Top Keywords

motor neurons
24
nerve fibers
20
nerve
19
proximal nerve
12
nerve repair
12
distal nerves
12
motor
8
nerve injury
8
functional recovery
8
severe extended
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!