Salmonella Rapidly Regulates Membrane Permeability To Survive Oxidative Stress.

mBio

Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada

Published: August 2016

Unlabelled: The outer membrane (OM) of Gram-negative bacteria provides protection against toxic molecules, including reactive oxygen species (ROS). Decreased OM permeability can promote bacterial survival under harsh circumstances and protects against antibiotics. To better understand the regulation of OM permeability, we studied the real-time influx of hydrogen peroxide in Salmonella bacteria and discovered two novel mechanisms by which they rapidly control OM permeability. We found that pores in two major OM proteins, OmpA and OmpC, could be rapidly opened or closed when oxidative stress is encountered and that the underlying mechanisms rely on the formation of disulfide bonds in the periplasmic domain of OmpA and TrxA, respectively. Additionally, we found that a Salmonella mutant showing increased OM permeability was killed more effectively by treatment with antibiotics. Together, these results demonstrate that Gram-negative bacteria regulate the influx of ROS for defense against oxidative stress and reveal novel targets that can be therapeutically targeted to increase bacterial killing by conventional antibiotics.

Importance: Pathogenic bacteria have evolved ways to circumvent inflammatory immune responses. A decrease in bacterial outer membrane permeability during infection helps protect bacteria from toxic molecules produced by the host immune system and allows for effective colonization of the host. In this report, we reveal molecular mechanisms that rapidly alter outer membrane pores and their permeability in response to hydrogen peroxide and oxidative stress. These mechanisms are the first examples of pores that are rapidly opened or closed in response to reactive oxygen species. Moreover, one of these mechanisms can be targeted to artificially increase membrane permeability and thereby increase bacterial killing by the antibiotic cefotaxime during in vitro experiments and in a mouse model of infection. We envision that a better understanding of the regulation of membrane permeability will lead to new targets and treatment options for multidrug-resistant infections.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4992977PMC
http://dx.doi.org/10.1128/mBio.01238-16DOI Listing

Publication Analysis

Top Keywords

membrane permeability
16
oxidative stress
16
outer membrane
12
permeability
9
gram-negative bacteria
8
toxic molecules
8
reactive oxygen
8
oxygen species
8
hydrogen peroxide
8
mechanisms rapidly
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!