Prediction of kinase-specific phosphorylation sites through an integrative model of protein context and sequence.

Biochim Biophys Acta

School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia 4072, Australia; Institute for Molecular Bioscience, The University of Queensland, St Lucia 4072, Australia.

Published: November 2016

Identifying kinase substrates and the specific phosphorylation sites they regulate is an important factor in understanding protein function regulation and signalling pathways. Computational prediction of kinase targets - assigning kinases to putative substrates, and selecting from protein sequence the sites that kinases can phosphorylate - requires the consideration of both the cellular context that kinases operate in, as well as their binding affinity. This consideration enables investigation of how phosphorylation influences a range of biological processes. We report here a novel probabilistic model for classifying kinase-specific phosphorylation sites from sequence across three model organisms: human, mouse and yeast. The model incorporates position-specific amino acid frequencies, and counts of co-occurring amino acids from kinase binding sites. We show how this model can be seamlessly integrated with protein interactions and cell-cycle abundance profiles. When evaluating the prediction accuracy of our method, PhosphoPICK, on an independent hold-out set of kinase-specific phosphorylation sites, it achieved an average specificity of 97%, with 32% sensitivity. We compared PhosphoPICK's ability, through cross-validation, to predict kinase-specific phosphorylation sites with alternative methods, and show that at high levels of specificity PhosphoPICK obtains greater sensitivity for most comparisons made. We investigated the relationship between kinase-specific phosphorylation sites and nuclear localisation signals. We show that kinases PKA, Akt1 and AurB have an over-representation of predicted binding sites at particular positions downstream from predicted nuclear localisation signals, demonstrating an important role for these kinases in regulating the nuclear import of proteins. PhosphoPICK is freely available as a web-service at http://bioinf.scmb.uq.edu.au/phosphopick.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbapap.2016.08.001DOI Listing

Publication Analysis

Top Keywords

phosphorylation sites
24
kinase-specific phosphorylation
20
sites
9
binding sites
8
nuclear localisation
8
localisation signals
8
phosphorylation
7
model
5
kinases
5
prediction kinase-specific
4

Similar Publications

This study employed proteomics and phosphoproteomics to compare protein expression and phosphorylation modifications in the milk fat globule membrane (MFGM) of human and bovine mature milk. A total of 410 proteins and 73 phosphorylation sites on 49 proteins were identified in the MFGM of bovine and human mature milk, respectively. Differential analysis revealed 40 differentially expressed proteins and 8 differentially phosphorylated sites, followed by bioinformatics analysis.

View Article and Find Full Text PDF

Mitotic chromatin marking governs the segregation of DNA damage.

Nat Commun

January 2025

Laboratory of Epigenome Integrity, Epigenetics & Cell Fate Centre, UMR7216 CNRS, Université Paris Cité, Paris, France.

The faithful segregation of intact genetic material and the perpetuation of chromatin states through mitotic cell divisions are pivotal for maintaining cell function and identity across cell generations. However, most exogenous mutagens generate long-lasting DNA lesions that are segregated during mitosis. How this segregation is controlled is unknown.

View Article and Find Full Text PDF

Baculovirus protein kinase 1 activates AMPK-protein phosphatase 5 axis to hijack transcription factor EB for self-proliferation.

Int J Biol Macromol

January 2025

Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Sericulture and Mulberry Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou 510642, China. Electronic address:

Baculovirus causes lethal nuclear polyhedrosis in insects, whereas its regulatory mechanism on host transcription has not been fully illustrated. Herein, Bombyx mori nucleopolyhedrovirus (BmNPV) infection caused dephosphorylation and thus cytoplasmic-nucleo translocation of transcription factor EB (BmTFEB) by inhibiting Mechanistic target of rapamycin complex 1 (MTORC1), while upregulating Adenosine monophosphate-activated protein kinase (AMPK) signaling to promote self-proliferation through the rival protein kinase 1 in Bombyx mori. Significantly, B.

View Article and Find Full Text PDF

Correlations of the expression of Cx43, SCF, p-cyclin E1 (Ser73), p-cyclin E1 (Thr77) and p-cyclin E1 (Thr395) in colon cancer tissues.

World J Gastrointest Oncol

January 2025

Department of Orthopaedics, Air Force Hospital of Eastern Theater, Anhui Medical University, Nanjing 230032, Jiangsu Province, China.

Background: Previous cellular studies have demonstrated that elevated expression of Cx43 promotes the degradation of cyclin E1 and inhibits cell proliferation through ubiquitination. Conversely, reduced expression results in a loss of this capacity to facilitate cyclin E degradation. The ubiquitination and degradation of cyclin E1 may be associated with phosphorylation at specific sites on the protein, with Cx43 potentially enhancing this process by facilitating the phosphorylation of these critical residues

Aim: To investigate the correlation between expression of Cx43, SKP1/Cullin1/F-box (SCF), p-cyclin E1 (ser73, thr77, thr395) and clinicopathological indexes in colon cancer.

View Article and Find Full Text PDF

Background: Extracellular signal-regulated kinase 1 (ERK1) belongs to mitogen-activated protein kinases, which are essential for memory formation, cognitive function, and synaptic plasticity. During Alzheimer's disease (AD), ERK1 phosphorylates tau at 15 phosphorylation sites, leading to the formation of neurofibrillary tangles. The overactivation of ERK1 in microglia promotes the release of pro-inflammatory cytokines, which results in neuroinflammation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!