PDGF-D/PDGFRβ promotes tongue squamous carcinoma cell (TSCC) progression via activating p38/AKT/ERK/EMT signal pathway.

Biochem Biophys Res Commun

Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China; Department of Oral and Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China. Electronic address:

Published: September 2016

Platelet-derived growth factor D (PDGF-D) signaling plays significant roles during the development and progression of human malignancies via interacting with the receptor of PDGF-D (PDGFR). Meanwhile, the majority of human tumor metastasis is closely associated with epithelial-mesenchymal transition (EMT). However, the underlying mechanism between PDGF-D/PDGFR signaling and EMT which involved in tumor metastasis remain dismal. This study aimed to investigate the role of PDGF-D signaling during EMT process of tongue squamous cell carcinoma (TSCC). In our study, the expression of PDGF-D and PDGFR were examined in primary TSCC samples and the expression of PDGF-D was also determined in TSCC cell lines. In addition, the correlation between PDGF-D expression and TSCC aggressive histopathological features was analyzed. Our results implied that upregulation of PDGFRβ in UM1 cells induced with exogenous PDGF-D can remarkably promote tumor cells invasiveness; conversely, when using small interfering RNA (siRNA), the invasiveness can be severely prohibited. Furthermore, PDGF-D downstream signal molecules p38, AKT, ERK and EMT biomarkers (E-cadherin, N-cadherin, Vimentin and snail) were measured using Western blot. Our results showed that PDGF-D can induce p38, AKT and ERK phosphorylation; downregulate epithelial markers and upregulate mesenchymal markers. On the contrary, PDGFRβ siRNA significantly prohibited p38, AKT and ERK phosphorylation; inhibited EMT process. Function analysis revealed that PDGFRβ siRNA obviously interfered with UM1 cell migration and invasion, according to transwell and wound healing assay. In conclusion, this study suggested that EMT process can be triggered by the PDGF-D/PDGFRβ axis in TSCC, and then involved in the tumor cell invasion via activation of p38/AKT/ERK/EMT pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2016.08.035DOI Listing

Publication Analysis

Top Keywords

emt process
12
p38 akt
12
akt erk
12
pdgf-d
9
tongue squamous
8
pdgf-d signaling
8
pdgf-d pdgfr
8
tumor metastasis
8
signaling emt
8
involved tumor
8

Similar Publications

Objectives:  Epithelial-mesenchymal transition (EMT) is a process that shifts cellular phenotype. It is linked to several different inflammatory diseases including periodontitis. This study was conducted to investigate the involvement of the EMT process in an experimental periodontitis (EP) model.

View Article and Find Full Text PDF

[Mechanism of miR-200b-3p-induced FOSL2 inhibitorion of endometrial cancer cell proliferation and metastasis].

Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi

December 2024

Department of Clinical Laboratory, Tianjin Fifth Central Hospital, Tianjin 300450, China.

Objective The purpose of this study was to investigate how miR-200b-3p inhibitors the proliferation and metastasis of endometrial cancer(EC) cells by inducing the expression of FOS-like antigen 2(FOSL2) of activator protein 1(AP1) transcription family. Methods Endometrial cancer cell line HEC-1-A was divided into 12 groups: NC-mimic (transfected with negative control NC mimic), miR-200b-3p mimic (transfected with miR-200b-3p mimic), NC-inhibitor (transfected with negative control NC inhibitor), miR-200b-3p inhibitor group (transfected with miR-200b-3p inhibitor), si-NC (transfected with negative control Si-NC), si-FOSL2 (transfected with si-FOSL2), oe-NC (transfected with negative control oe-NC), oe-FOSL2 group (oe-FOSL2), miR-200b-3p mimic+oe-NC group (co-transfected with miR-200b-3p mimic and oe-NC), miR-200b-3p mimic+oe-FOSL2 group (co-transfected with miR-200b-3p mimic and oe-FOSL2), miR-200b-3p inhibitor+si-NC group (co-transfected with miR-200b-3p inhibitor and si-NC), miR-200b-3p inhibitor+si-FOSL2 group (co-transfected with miR-200b-3p inhibitor and si-FOSL2). Real-time fluorescence quantitative PCR, Western blot, CCK-8 assay, scratch test and Transwell assay were used to detect the expression of miR-200b-3p mRNA, FOSL2 mRNA and protein expression level, cell proliferation, migration and invasion.

View Article and Find Full Text PDF

Triple-negative breast cancer (TNBC) is a subtype known for its aggressive nature, high rates of recurrence, and treatment resistance, largely attributed to the presence of breast cancer stem cells (BCSCs). Traditional therapies often struggle to eliminate BCSCs, which contributes to tumor recurrence. One promising strategy for addressing this challenge is targeting the Notch signaling pathway, which plays a critical role in the self-renewal and maintenance of BCSCs.

View Article and Find Full Text PDF

Epithelial-mesenchymal transition (EMT) is a drastic and important cellular process by which epithelial cells acquire a mesenchymal phenotype. Herein, we evaluated EMT-induced membrane variations using scanning ion conductance microscopy (SICM), which allows noninvasive nanoscale visualization. The results showed that the number and size of ruffles on the living cell surface decreased as the EMT progressed.

View Article and Find Full Text PDF

Raddeanin A (RA) Inhibited EMT and Stemness in Glioblastoma via downregulating Skp2.

J Cancer

January 2025

Cancer Prevention and Treatment Institute of Chengdu, Department of Neurosurgery, Chengdu Fifth People's Hospital (The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu 611137, China.

Glioblastoma (GBM), notorious for its poor prognosis, stands as a formidable challenge within the central nervous system tumor category, primarily due to its intricate pathology that encompasses stemness and the epithelial-mesenchymal transition (EMT). The ubiquity of S phase kinase-associated protein 2 (Skp2) overexpression in GBM, a protein implicated in both EMT and stemness traits, correlates with increased drug resistance, elevated tumor grades, and adverse outcomes. This investigation delves into the impact of Raddeanin A (RA), a triterpenoid compound extracted from Anemone raddeana Regel, on GBM, with a special focus on its influence over Skp2 expression levels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!