Multi-target therapeutics for neuropsychiatric and neurodegenerative disorders.

Drug Discov Today

Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa. Electronic address:

Published: December 2016

Historically, neuropsychiatric and neurodegenerative disease treatments focused on the 'magic bullet' concept; however multi-targeted strategies are increasingly attractive gauging from the escalating research in this area. Because these diseases are typically co-morbid, multi-targeted drugs capable of interacting with multiple targets will expand treatment to the co-morbid disease condition. Despite their theoretical efficacy, there are significant impediments to clinical success (e.g., difficulty titrating individual aspects of the drug and inconclusive pathophysiological mechanisms). The new and revised diagnostic frameworks along with studies detailing the endophenotypic characteristics of the diseases promise to provide the foundation for the circumvention of these impediments. This review serves to evaluate the various marketed and nonmarketed multi-targeted drugs with particular emphasis on their design strategy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.drudis.2016.08.001DOI Listing

Publication Analysis

Top Keywords

neuropsychiatric neurodegenerative
8
multi-targeted drugs
8
multi-target therapeutics
4
therapeutics neuropsychiatric
4
neurodegenerative disorders
4
disorders historically
4
historically neuropsychiatric
4
neurodegenerative disease
4
disease treatments
4
treatments focused
4

Similar Publications

(Fragile X messenger ribonucleoprotein 1), located on the X-chromosome, encodes the multi-functional FMR1 protein (FMRP), critical to brain development and function. Trinucleotide CGG repeat expansions at this locus cause a range of neurological disorders, collectively referred to as Fragile X-related conditions. The most well-known of these is Fragile X syndrome, a neurodevelopmental disorder associated with syndromic facial features, autism, intellectual disabilities, and seizures.

View Article and Find Full Text PDF

An ex vivo model of systemically-mediated effects of ozone inhalation on the brain.

Toxicology

January 2025

Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, K1A 0K9, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, K1H 8M5, Canada. Electronic address:

Air pollution is associated with increased risk of neurodegenerative and neuropsychiatric conditions. While animal models have increased our understanding of how air pollution contributes to brain pathologies - including through oxidative stress, inflammatory, and stress hormone pathways - investigation of underlying mechanisms remains limited due to a lack of human-relevant models that incorporate systemic processes. Our objective was to establish an ex vivo approach that enables assessment of the roles of plasma mediators in pollutant-induced effects in the brain.

View Article and Find Full Text PDF

Multi-scale Analysis Reveals Hippocampal Subfield Vulnerabilities to Chronic Cortisol Overexposure: Evidence from Cushing's Disease.

Biol Psychiatry Cogn Neurosci Neuroimaging

January 2025

Department of Neurosurgery, The First Medical Centre of Chinese PLA General Hospital, Beijing, China; Neurosurgery Institute, Chinese PLA General Hospital, Beijing, PR China. Electronic address:

Background: Chronic cortisol overexposure plays a significant role in the development of neuropathological changes associated with neuropsychiatric and neurodegenerative disorders. The hippocampus, the primary target of cortisol, may exhibit characteristic regional responses due to its internal heterogeneity. This study explores structural and functional alterations of hippocampal subfields in Cushing's disease (CD), an endogenous model of chronic cortisol overexposure.

View Article and Find Full Text PDF

Clinical manifestations and molecular genetics of seven patients with Niemann-Pick type-C: a case series with a novel variant.

J Pediatr Endocrinol Metab

January 2025

Department of Pediatric Metabolism and Ankara University Rare Diseases Application and Research Center, Ankara University Faculty of Medicine, Ankara, Türkiye.

Objectives: Niemann-Pick type C (NPC) is a rare, autosomal recessive, neurodegenerative disorder caused by biallelic pathogenic variants in the or genes, leading to lysosomal lipid accumulation. NPC has an incidence of 1 in 100,000 live births and presents with a wide range of symptoms affecting visceral organs and the central nervous system. We aim to describe the diverse clinical presentations of NPC through case studies.

View Article and Find Full Text PDF

Neurocan regulates axon initial segment organization and neuronal activity.

Matrix Biol

January 2025

German Center for Neurodegenerative Diseases (DZNE), Helmholtz Association of German Research Centers, Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany; Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany. Electronic address:

The neural extracellular matrix (ECM) accumulates in the form of perineuronal nets (PNNs), particularly around fast-spiking GABAergic interneurons in the cortex and hippocampus, but also around synapses and in association with the axon initial segments (AIS) and nodes of Ranvier. Increasing evidence highlights the role of Neurocan (Ncan), a brain-specific component of ECM, in the pathophysiology of neuropsychiatric disorders like bipolar disorder and schizophrenia. Ncan localizes at PNNs, perisynaptically, and at the nodes of Ranvier and the AIS, highlighting its potential role in regulating axonal excitability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!