Background: Large body size can cause a higher proportion of emitted photons being attenuated within the patient. Therefore, clinical myocardial perfusion SPECT (MPS) protocols often include unproportionally higher radioisotope activity to obese patients. The aim was to evaluate if a linear weight-adjusted low-dose protocol can be applied to obese patients and thereby decrease radiation exposure.

Methods And Result: Two hundred patients (>110 kg, BMI 18-41, [n = 69], ≤ 110 kg, BMI 31-58, [n = 131]) underwent Tc-tetrofosmin stress examination on a Cadmium Zinc Telluride or a conventional gamma camera using new generations of reconstruction algorithm (Resolution Recovery). Patients <110 kg were administered 2.5 MBq/kg, patients between 110 and 120 kg received 430 MBq and patients >120 kg received 570 MBq according to clinical routine. Patients >110 kg had 130% total number of counts in the images compared to patients <110 kg. Recalculating the counts to correspond to an administered activity of 2.5 MBq/kg resulted in similar number of counts across the groups. Image analyses in a subgroup with images corresponding to high activity and 2.5 MBq/kg showed no difference in image quality or ischemia quantification.

Conclusion: Linear low-dose weight-adjusted protocol of 2.5 MBq/kg in MPS can be applied over a large weight span without loss of counts or image quality, resulting in a significant reduction in radiation exposure to obese patients.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12350-016-0628-7DOI Listing

Publication Analysis

Top Keywords

myocardial perfusion
8
perfusion spect
8
linear weight-adjusted
8
obese patients
8
radiation dose
4
dose overweighted
4
patients
4
overweighted patients
4
patients undergoing
4
undergoing myocardial
4

Similar Publications

Purpose: Research on the safety and efficacy of del Nido cardioplegia in adult patients with reduced left ventricular ejection fraction (LVEF) is limited. We evaluated the effect of del Nido cardioplegia on early outcomes of cardiac surgery in this cohort.

Methods: PubMed, Scopus, and the Cochrane Central Register of Controlled Trials were searched through August 2024 to conduct a meta-analysis comparing del Nido to other cardioplegia in adult patients with reduced LVEF (≤50%).

View Article and Find Full Text PDF

Prolonged Hypoxia in Rat Living Myocardial Slices Affects Function, Expression, and Structure.

Int J Mol Sci

December 2024

Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, 30625 Hannover, Germany.

Ischemic heart disease is the leading cause of death worldwide. Reduced oxygen supply and myocardial hypoxia lead to tissue damage and impairment of the heart function. To the best of our knowledge, the primary functional effects of hypoxia in the multicellular model of living myocardial slices (LMSs) have not been investigated so far.

View Article and Find Full Text PDF

Physical activity improves myocardial structure, function and resilience via complex, incompletely defined mechanisms. We explored effects of 1-2 wks swim training on cardiac and systemic phenotype in young male C57Bl/6 mice. Two wks forced swimming (90 min twice daily) resulted in cardiac hypertrophy (22% increase in heart:body weight, P<0.

View Article and Find Full Text PDF

Cardiogenic shock represents a critical condition in which the heart is unable to maintain adequate circulation leading to insufficient tissue perfusion and end-organ failure. Temporary mechanical circulatory support offers the potential to stabilize patients, provide a bridge-to-recovery, provide a bridge-to-decision, or facilitate definitive heart replacement therapies. Although randomized controlled trials have been performed in infarct-related cardiogenic shock and refractory cardiac arrest, the optimal timing, appropriate patient selection, and optimal implementation of these devices remain complex and predominantly based on observational data and expert consensus, especially in non-ischaemic shock.

View Article and Find Full Text PDF

Adenosine is extensively utilized in myocardial stress perfusion imaging for the detection and risk stratification of coronary artery disease. It has a well-established safety profile. The majority of the undesirable effects experienced during adenosine infusion are transient (owing to its brief half-life of ~10 s) and arise from the stimulation of receptors in the atrio-ventricular (AV) node (AV block) and bronchial smooth muscles (bronchospasm).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!